Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(20): 204801, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26047232

RESUMO

We report on high resolution measurements of resonances in the spectrum of coherent synchrotron radiation (CSR) at the Canadian Light Source (CLS). The resonances permeate the spectrum at wave number intervals of 0.074 cm(-1), and are highly stable under changes in the machine setup (energy, bucket filling pattern, CSR in bursting or continuous mode). Analogous resonances were predicted long ago in an idealized theory as eigenmodes of a smooth toroidal vacuum chamber driven by a bunched beam moving on a circular orbit. A corollary of peaks in the spectrum is the presence of pulses in the wakefield of the bunch at well-defined spatial intervals. Through experiments and further calculations we elucidate the resonance and wakefield mechanisms in the CLS vacuum chamber, which has a fluted form much different from a smooth torus. The wakefield is observed directly in the 30-110 GHz range by rf diodes, and indirectly by an interferometer in the THz range. The wake pulse sequence found by diodes is less regular than in the toroidal model, and depends on the point of observation, but is accounted for in a simulation of fields in the fluted chamber. Attention is paid to polarization of the observed fields, and possible coherence of fields produced in adjacent bending magnets. Low frequency wakefield production appears to be mainly local in a single bend, but multibend effects cannot be excluded entirely, and could play a role in high frequency resonances. New simulation techniques have been developed, which should be invaluable in further work.

2.
J Chem Phys ; 137(10): 104313, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22979865

RESUMO

In this work, terahertz and Fourier transform far-infrared (FTFIR) synchrotron spectra of methyl mercaptan, CH(3)SH, have been investigated in order to provide new laboratory information for enhanced observations of this species in interstellar molecular clouds and star-forming regions. Like its methanol cousin, methyl mercaptan has particularly rich spectra associated with its large-amplitude internal rotation that extend throughout the THz and FIR regions. We have recorded new spectra for CH(3)SH from 1.1-1.5 and 1.790-1.808 THz at the University of Cologne as well as high-resolution FTFIR synchrotron spectra from 50-550 cm(-1) at 0.001 cm(-1) resolution on the far-IR beam-line at the Canadian Light Source. Assignments are reported for rotational quantum numbers up to J ≈ 40 and K ≈ 15, and torsional states up to v(t) = 2 for the THz measurements and v(t) = 3 for the FTFIR observations. The THz and FTFIR measurements together with literature results have been combined in a global analysis of a dataset comprising a total of 1725 microwave and THz frequencies together with ~18000 FTFIR transitions, ranging up to v(t) = 2 and J(max) = 30 for MW∕THz and 40 for FTFIR. The global fit employs 78 torsion-rotation parameters and has achieved a weighted standard deviation of ~1.1. A prediction list (v(t) ≤ 2, J ≤ 45 and K ≤ 20) has been generated from the model giving essentially complete coverage of observable CH(3)(32)SH transitions within the bandwidths of major new astronomical facilities such as HIFI (Heterodyne Instrument for the Far Infrared) on the Herschel Space Observatory, ALMA (Atacama Large Millimeter Array), SOFIA (Stratospheric Observatory For Infrared Astronomy) and APEX (Atacama Pathfinder Experiment) to close to spectroscopic accuracy.


Assuntos
Compostos de Sulfidrila/química , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia Terahertz
3.
J Chem Phys ; 135(10): 104306, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21932892

RESUMO

The C-N stretching infrared fundamental of CH(3)NH(2) has been investigated by high-resolution laser sideband and Fourier transform synchrotron spectroscopy to explore the energy level structure and to look for possible interactions with high-lying torsional levels of the ground state and other vibrational modes. The spectrum is complicated by two coupled large-amplitude motions in the molecule, the CH(3) torsion and the NH(2) inversion, which lead to rich spectral structure with a wide range of energy level splittings and relative line intensities. Numerous sub-bands have been assigned for K values ranging up to 12 for the stronger a inversion species for the v(t) = 0 torsional state, along with many of the weaker sub-bands of the s species. The C-N stretching sub-state origins have been determined by fitting the upper-state term values to J(J + 1) power-series expansions. For comparison with the ground-state behaviour, both ground and C-N stretch origins have been fitted to a phenomenological Fourier series model that produces an interesting pattern with the differing periodicities of the torsional and inversion energies. The amplitude of the torsional energy oscillation increases substantially for the C-N stretch, while the amplitude of the inversion energy oscillation is relatively unchanged. Independent inertial scale factors ρ were fitted for the torsion and the inversion and differ significantly in the upper state. The C-N stretching vibrational energy is determined to be 1044.817 cm(-1), while the effective upper state B-value is 0.7318 cm(-1). Several anharmonic resonances with v(t) = 4 ground-state levels have been observed and partially characterized. A variety of J-localized level-crossing resonances have also been seen, five of which display forbidden transitions arising from intensity borrowing that allow determination of the interaction coupling constants.


Assuntos
Metilaminas/química , Dióxido de Carbono/química , Lasers , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA