Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Blood Cancer Discov ; 4(2): 150-169, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468984

RESUMO

Transformation to aggressive disease histologies generates formidable clinical challenges across cancers, but biological insights remain few. We modeled the genetic heterogeneity of chronic lymphocytic leukemia (CLL) through multiplexed in vivo CRISPR-Cas9 B-cell editing of recurrent CLL loss-of-function drivers in mice and recapitulated the process of transformation from indolent CLL into large cell lymphoma [i.e., Richter syndrome (RS)]. Evolutionary trajectories of 64 mice carrying diverse combinatorial gene assortments revealed coselection of mutations in Trp53, Mga, and Chd2 and the dual impact of clonal Mga/Chd2 mutations on E2F/MYC and interferon signaling dysregulation. Comparative human and murine RS analyses demonstrated tonic PI3K signaling as a key feature of transformed disease, with constitutive activation of the AKT and S6 kinases, downmodulation of the PTEN phosphatase, and convergent activation of MYC/PI3K transcriptional programs underlying enhanced sensitivity to MYC/mTOR/PI3K inhibition. This robust experimental system presents a unique framework to study lymphoid biology and therapy. SIGNIFICANCE: Mouse models reflective of the genetic complexity and heterogeneity of human tumors remain few, including those able to recapitulate transformation to aggressive disease histologies. Herein, we model CLL transformation into RS through multiplexed in vivo gene editing, providing key insight into the pathophysiology and therapeutic vulnerabilities of transformed disease. This article is highlighted in the In This Issue feature, p. 101.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Linfoma não Hodgkin , Humanos , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/terapia , Fosfatidilinositol 3-Quinases/genética , Linfoma Difuso de Grandes Células B/genética , Linfócitos B
2.
Cancer Res ; 81(24): 6117-6130, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34686499

RESUMO

Chronic lymphocytic leukemia (CLL) is characterized by disordered DNA methylation, suggesting these epigenetic changes might play a critical role in disease onset and progression. The methyltransferase DNMT3A is a key regulator of DNA methylation. Although DNMT3A somatic mutations in CLL are rare, we found that low DNMT3A expression is associated with more aggressive disease. A conditional knockout mouse model showed that homozygous depletion of Dnmt3a from B cells results in the development of CLL with 100% penetrance at a median age of onset of 5.3 months, and heterozygous Dnmt3a depletion yields a disease penetrance of 89% with a median onset at 18.5 months, confirming its role as a haploinsufficient tumor suppressor. B1a cells were confirmed as the cell of origin of disease in this model, and Dnmt3a depletion resulted in focal hypomethylation and activation of Notch and Myc signaling. Amplification of chromosome 15 containing the Myc gene was detected in all CLL mice tested, and infiltration of high-Myc-expressing CLL cells in the spleen was observed. Notably, hyperactivation of Notch and Myc signaling was exclusively observed in the Dnmt3a CLL mice, but not in three other CLL mouse models tested (Sf3b1-Atm, Ikzf3, and MDR), and Dnmt3a-depleted CLL were sensitive to pharmacologic inhibition of Notch signaling in vitro and in vivo. Consistent with these findings, human CLL samples with lower DNMT3A expression were more sensitive to Notch inhibition than those with higher DNMT3A expression. Altogether, these results suggest that Dnmt3a depletion induces CLL that is highly dependent on activation of Notch and Myc signaling. SIGNIFICANCE: Loss of DNMT3A expression is a driving event in CLL and is associated with aggressive disease, activation of Notch and Myc signaling, and enhanced sensitivity to Notch inhibition.


Assuntos
DNA Metiltransferase 3A/metabolismo , DNA Metiltransferase 3A/fisiologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Leucemia Linfocítica Crônica de Células B/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Notch/metabolismo , Animais , Antibacterianos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proliferação de Células , DNA Metiltransferase 3A/genética , Daptomicina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , RNA-Seq , Receptores Notch/antagonistas & inibidores , Receptores Notch/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cancer Cell ; 39(3): 380-393.e8, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33689703

RESUMO

Hotspot mutation of IKZF3 (IKZF3-L162R) has been identified as a putative driver of chronic lymphocytic leukemia (CLL), but its function remains unknown. Here, we demonstrate its driving role in CLL through a B cell-restricted conditional knockin mouse model. Mutant Ikzf3 alters DNA binding specificity and target selection, leading to hyperactivation of B cell receptor (BCR) signaling, overexpression of nuclear factor κB (NF-κB) target genes, and development of CLL-like disease in elderly mice with a penetrance of ~40%. Human CLL carrying either IKZF3 mutation or high IKZF3 expression was associated with overexpression of BCR/NF-κB pathway members and reduced sensitivity to BCR signaling inhibition by ibrutinib. Our results thus highlight IKZF3 oncogenic function in CLL via transcriptional dysregulation and demonstrate that this pro-survival function can be achieved by either somatic mutation or overexpression of this CLL driver. This emphasizes the need for combinatorial approaches to overcome IKZF3-mediated BCR inhibitor resistance.


Assuntos
Linfócitos B/patologia , Fator de Transcrição Ikaros/genética , Leucemia Linfocítica Crônica de Células B/genética , Mutação/genética , Transcrição Gênica/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , NF-kappa B/genética , Receptores de Antígenos de Linfócitos B/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA