Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur Urol Oncol ; 3(4): 498-508, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31412010

RESUMO

BACKGROUND: Genomic analysis of circulating tumor cells (CTCs) could provide a unique and accessible representation of tumor diversity but remains hindered by technical challenges associated with CTC rarity and heterogeneity. OBJECTIVE: To evaluate CTCs as surrogate samples for genomic analyses in metastatic castration-resistant prostate cancer (mCRPC). DESIGN, SETTING, AND PARTICIPANTS: Three isolation strategies (filter laser-capture microdissection, self-seeding microwell chips, and fluorescence-activated cell sorting) were developed to capture CTCs with various epithelial and mesenchymal phenotypes and isolate them at the single-cell level. Whole-genome amplification (WGA) and WGA quality control were performed on 179 CTC samples, matched metastasis biopsies, and negative controls from 11 patients. All patients but one were pretreated with enzalutamide or abiraterone. Whole-exome sequencing (WES) of 34 CTC samples, metastasis biopsies, and negative controls were performed for seven patients. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: WES of CTCs was rigorously qualified in terms of percentage coverage at 10× depth, allelic dropout, and uncovered regions. Shared somatic mutations between CTCs and matched metastasis biopsies were identified. A customized approach based on determination of mutation rates for CTC samples was developed for identification of CTC-exclusive mutations. RESULTS AND LIMITATIONS: Shared mutations were mostly detected in epithelial CTCs and were recurrent. For two patients for whom a deeper analysis was performed, a few CTCs were sufficient to represent half to one-third of the mutations in the matched metastasis biopsy. CTC-exclusive mutations were identified in both epithelial and nonepithelial CTCs and affected cytoskeleton, invasion, DNA repair, and cancer-driver genes. Some 41% of CTC-exclusive mutations had a predicted deleterious impact on protein function. Phylogenic relationships between CTCs with distinct phenotypes were evidenced. CONCLUSIONS: CTCs can provide unique insight into metastasis mutational diversity and reveal undiagnosed genomic aberrations in matched metastasis biopsies. PATIENT SUMMARY: Our results demonstrate the clinical potential of circulating tumor cells to provide insight into metastatic events that could be critical to target using precision medicine.


Assuntos
Análise Mutacional de DNA , Sequenciamento do Exoma , Mutação , Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Idoso , Humanos , Masculino , Pessoa de Meia-Idade
2.
Cancer Res ; 77(9): 2222-2230, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461563

RESUMO

The duration and magnitude of clinical response are unpredictable in ALK-rearranged non-small cell lung cancer (NSCLC) patients treated with crizotinib, although all patients invariably develop resistance. Here, we evaluated whether circulating tumor cells (CTC) with aberrant ALK-FISH patterns [ALK-rearrangement, ALK-copy number gain (ALK-CNG)] monitored on crizotinib could predict progression-free survival (PFS) in a cohort of ALK-rearranged patients. Thirty-nine ALK-rearranged NSCLC patients treated with crizotinib as first ALK inhibitor were recruited prospectively. Blood samples were collected at baseline and at an early time-point (2 months) on crizotinib. Aberrant ALK-FISH patterns were examined in CTCs using immunofluorescence staining combined with filter-adapted FISH after filtration enrichment. CTCs were classified into distinct subsets according to the presence of ALK-rearrangement and/or ALK-CNG signals. No significant association between baseline numbers of ALK-rearranged or ALK-CNG CTCs and PFS was observed. However, we observed a significant association between the decrease in CTC number with ALK-CNG on crizotinib and a longer PFS (likelihood ratio test, P = 0.025). In multivariate analysis, the dynamic change of CTC with ALK-CNG was the strongest factor associated with PFS (HR, 4.485; 95% confidence interval, 1.543-13.030, P = 0.006). Although not dominant, ALK-CNG has been reported to be one of the mechanisms of acquired resistance to crizotinib in tumor biopsies. Our results suggest that the dynamic change in the numbers of CTCs with ALK-CNG may be a predictive biomarker for crizotinib efficacy in ALK-rearranged NSCLC patients. Serial molecular analysis of CTC shows promise for real-time patient monitoring and clinical outcome prediction in this population. Cancer Res; 77(9); 2222-30. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/sangue , Carcinoma Pulmonar de Células não Pequenas/sangue , Resistencia a Medicamentos Antineoplásicos/genética , Receptores Proteína Tirosina Quinases/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Quinase do Linfoma Anaplásico , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Crizotinibe , Variações do Número de Cópias de DNA/genética , Intervalo Livre de Doença , Feminino , Rearranjo Gênico/efeitos dos fármacos , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/patologia , Prognóstico , Pirazóis/administração & dosagem , Piridinas/administração & dosagem , Receptores Proteína Tirosina Quinases/genética
3.
BMC Cancer ; 16: 477, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27417942

RESUMO

BACKGROUND: Circulating tumor cell (CTC)-filtration methods capture high numbers of CTCs in non-small-cell lung cancer (NSCLC) and metastatic prostate cancer (mPCa) patients, and hold promise as a non-invasive technique for treatment selection and disease monitoring. However filters have drawbacks that make the automation of microscopy challenging. We report the semi-automated microscopy method we developed to analyze filtration-enriched CTCs from NSCLC and mPCa patients. METHODS: Spiked cell lines in normal blood and CTCs were enriched by ISET (isolation by size of epithelial tumor cells). Fluorescent staining was carried out using epithelial (pan-cytokeratins, EpCAM), mesenchymal (vimentin, N-cadherin), leukocyte (CD45) markers and DAPI. Cytomorphological staining was carried out with Mayer-Hemalun or Diff-Quik. ALK-, ROS1-, ERG-rearrangement were detected by filter-adapted-FISH (FA-FISH). Microscopy was carried out using an Ariol scanner. RESULTS: Two combined assays were developed. The first assay sequentially combined four-color fluorescent staining, scanning, automated selection of CD45(-) cells, cytomorphological staining, then scanning and analysis of CD45(-) cell phenotypical and cytomorphological characteristics. CD45(-) cell selection was based on DAPI and CD45 intensity, and a nuclear area >55 µm(2). The second assay sequentially combined fluorescent staining, automated selection of CD45(-) cells, FISH scanning on CD45(-) cells, then analysis of CD45(-) cell FISH signals. Specific scanning parameters were developed to deal with the uneven surface of filters and CTC characteristics. Thirty z-stacks spaced 0.6 µm apart were defined as the optimal setting, scanning 82 %, 91 %, and 95 % of CTCs in ALK-, ROS1-, and ERG-rearranged patients respectively. A multi-exposure protocol consisting of three separate exposure times for green and red fluorochromes was optimized to analyze the intensity, size and thickness of FISH signals. CONCLUSIONS: The semi-automated microscopy method reported here increases the feasibility and reliability of filtration-enriched CTC assays and can help progress towards their validation and translation to the clinic.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Células Neoplásicas Circulantes/metabolismo , Quinase do Linfoma Anaplásico , Automação Laboratorial , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Separação Celular , Forma Celular , Humanos , Hibridização in Situ Fluorescente , Neoplasias Pulmonares/genética , Microscopia de Fluorescência , Receptores Proteína Tirosina Quinases/genética
4.
Oncotarget ; 7(34): 55069-55082, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27391263

RESUMO

Molecular characterization of cancer samples is hampered by tumor tissue availability in metastatic castration-resistant prostate cancer (mCRPC) patients. We reported the results of prospective PETRUS study of biomarker assessment in paired primary prostatic tumors, metastatic biopsies and circulating tumor cells (CTCs). Among 54 mCRPC patients enrolled, 38 (70%) had biopsies containing more than 50% tumour cells. 28 (52%) patients were analyzed for both tissue samples and CTCs. FISH for AR-amplification and TMPRSS2-ERG translocation were successful in 54% and 32% in metastatic biopsies and primary tumors, respectively. By comparing CellSearch and filtration (ISET)-enrichment combined to four color immunofluorescent staining, we showed that CellSearch and ISET isolated distinct subpopulations of CTCs: CTCs undergoing epithelial-to-mesenchymal transition, CTC clusters and large CTCs with cytomorphological characteristics but no detectable markers were isolated using ISET. Epithelial CTCs detected by the CellSearch were mostly lost during the ISET-filtration. AR-amplification was detected in CellSearch-captured CTCs, but not in ISET-enriched CTCs which harbor exclusively AR gain of copies. Eighty-eight percent concordance for ERG-rearrangement was observed between metastatic biopsies and CTCs even if additional ERG-alteration patterns were detected in ISET-enriched CTCs indicating a higher heterogeneity in CTCs.Molecular screening of metastatic biopsies is achievable in a multicenter context. Our data indicate that CTCs detected by the CellSearch and the ISET-filtration systems are not only phenotypically but also genetically different. Close attention must be paid to CTC characterization since neither approach tested here fully reflects the tremendous phenotypic and genetic heterogeneity present in CTCs from mCRPC patients.


Assuntos
Heterogeneidade Genética , Células Neoplásicas Circulantes/metabolismo , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biópsia , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fenótipo , Estudos Prospectivos , Próstata/efeitos dos fármacos , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Relatório de Pesquisa
5.
Cancer Biomark ; 15(2): 151-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25519011

RESUMO

BACKGROUND: The independent prognostic value of Circulating Tumour Cells (CTC) level has been demonstrated in several solid tumours. There is currently few data on Malignant Pleural Mesothelioma (MPM) and CTC. We investigated whether the presence of CTC was correlated with prognosis factors and treatment efficacy. METHODS/OBJECTIVES: MPM patients (pts) were enrolled in a prospective monocentric study. CTC detection was made using the "CellSearch" assay. The correlation between the presence of CTC and worse prognosis factors was assessed using the X(2) test. Comparison of Overall Survival (OS) and Progression Free Survival (PFS) according to CTC detection was performed using the log-rank test. RESULTS: Twenty-seven MPM pts with a median follow-up of 4.2 months were included. CTC were detected in 44% of pts with a median level of 1.5. No significant correlation was observed between the presence of CTC and worse prognosis factors. Moreover, CTC detection was not a significant predictor of OS or PFS (p=0.155 and p=0.32 respectively). CONCLUSIONS: CTC were detected in a small cohort of MPM patients. We couldn't demonstrate a significant prognostic value or a difference in OS/PFS between CTC levels. Further analyses, validation studies and detection techniques are needed to establish their real clinical value in MPM.


Assuntos
Neoplasias Pulmonares/diagnóstico , Mesotelioma/diagnóstico , Células Neoplásicas Circulantes/patologia , Neoplasias Pleurais/diagnóstico , Idoso , Biomarcadores Tumorais , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/terapia , Masculino , Mesotelioma/mortalidade , Mesotelioma/terapia , Mesotelioma Maligno , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Células Neoplásicas Circulantes/metabolismo , Neoplasias Pleurais/mortalidade , Neoplasias Pleurais/terapia , Prognóstico , Estudos Prospectivos , Fatores de Risco , Análise de Sobrevida
6.
Acta Cytol ; 56(6): 655-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23207444

RESUMO

Circulating tumor cells (CTCs) have emerged as potential biomarkers in several cancers such as colon, prostate, and breast carcinomas, with a correlation between CTC number and patient prognosis being established by independent research groups. The detection and enumeration of CTCs, however, is still a developing field, with no universal method of detection suitable for all types of cancer. CTC detection in lung cancer in particular has proven difficult to perform, as CTCs in this type of cancer often present with nonepithelial characteristics. Moreover, as many detection methods rely on the use of epithelial markers to identify CTCs, the loss of these markers during epithelial-to-mesenchymal transition in certain metastatic cancers can render these methods ineffective. The development of personalized medicine has led to an increase in the advancement of molecular characterization of CTCs. The application of techniques such as FISH and RT-PCR to detect EGFR, HER2, and KRAS abnormalities in lung, breast, and colon cancer, for example, could be used to characterize CTCs in real time. The use of CTCs as a 'liquid biopsy' is therefore an exciting possibility providing information on patient prognosis and treatment efficacy. This review summarizes the state of CTC detection today, with particular emphasis on lung cancer, and discusses the future applications of CTCs in helping the clinician to develop new strategies in patient treatment.


Assuntos
Neoplasias Pulmonares/diagnóstico , Células Neoplásicas Circulantes/patologia , Humanos
7.
Cancer Discov ; 2(5): 434-49, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22588881

RESUMO

UNLABELLED: The prevailing concept is that immediate mobilization of bone marrow-derived circulating endothelial progenitor cells (CEP) is a key mechanism mediating tumor resistance to vascular-disrupting agents (VDA). Here, we show that administration of VDA to tumor-bearing mice induces 2 distinct peaks in CEPs: an early, unspecific CEP efflux followed by a late yet more dramatic tumor-specific CEP burst that infiltrates tumors and is recruited to vessels. Combination with antiangiogenic drugs could not disrupt the early peak but completely abrogated the late VDA-induced CEP burst, blunted bone marrow-derived cell recruitment to tumors, and resulted in striking antitumor efficacy, indicating that the late CEP burst might be crucial to tumor recovery after VDA therapy. CEP and circulating endothelial cell kinetics in VDA-treated patients with cancer were remarkably consistent with our preclinical data. These findings expand the current understanding of vasculogenic "rebounds" that may be targeted to improve VDA-based strategies. SIGNIFICANCE: Our findings suggest that resistance to VDA therapy may be strongly mediated by late, rather than early, tumor-specific recruitment of CEPs, the suppression of which resulted in increased VDA-mediated antitumor efficacy. VDA-based therapy might thus be significantly enhanced by combination strategies targeting late CEP mobilization.


Assuntos
Inibidores da Angiogênese/farmacologia , Resistencia a Medicamentos Antineoplásicos , Células Endoteliais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Inibidores da Angiogênese/uso terapêutico , Animais , Linhagem Celular Tumoral , Células Endoteliais/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco/citologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA