Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Neurobiol ; 61(1): 434-449, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37624487

RESUMO

Ischemic stroke is a heterogeneous brain injury with complex pathophysiology and it is also a time sensitive neurological injury disease. At present, the treatment options for ischemic stroke are still limited. 6S-5-methyltetrahydrofolate-calcium (MTHF-Ca) is the calcium salt of the predominant form of dietary folate in circulation. MTHF-Ca has potential neuroprotective effect on neurocytes, but whether it can be used for ischemic stroke treatment remains unknown. We established zebrafish ischemic stroke model through photothrombotic method to evaluate the protective effect of MTHF-Ca on the ischemic brain injury of zebrafish. We demonstrated that MTHF-Ca reduced the brain damage by reducing motor dysfunction and neurobehavioral defects of zebrafish with telencephalon infarction injury. MTHF-Ca counteracted oxidative damages after Tel injury by increasing the activities of GSH-Px and SOD and decreasing the content of MDA. RNA-seq and RT-qPCR results showed that MTHF-Ca played a neuroprotective role by alleviating neuroinflammation, inhibiting blood coagulation, and neuronal apoptosis processes. Overall, we have demonstrated that MTHF-Ca has neuroprotective effect in ischemic stroke and can be used as a potential treatment for ischemic stroke.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Tetra-Hidrofolatos , Animais , Peixe-Zebra , Cálcio , Infarto , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico
2.
Life Sci ; 327: 121839, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290666

RESUMO

AIM: 6S-5-methyltetrahydrofolate is the predominant form of dietary folate in circulation and is used as a crystalline form of calcium salt (MTHF-Ca). Reports revealed that MTHF-Ca was more safe than folic acid, a synthetic and highly stable version of folate. Folic acid has been reported to have anti-inflammatory effects. The study's objective was to assess the anti-inflammatory effect of MTHF-Ca in vitro and in vivo. MAIN METHODS: In vitro, the ROS production was assessed by H2DCFDA, and nuclear translocation of NF-κB were evaluated by the NF-κB nuclear translocation assay kit. Interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-alpha (TNF-α) were assessed using ELISA. In vivo, ROS production was assessed by H2DCFDA, neutrophils and macrophages recruitment were evaluated in tail transection-induced and CuSO4-induced zebrafish inflammation models. Expression of inflammation related genes were also investigated based on CuSO4-induced zebrafish inflammation model. KEY FINDINGS: MTHF-Ca treatment decreased LPS-induced ROS production, inhibited nuclear translocation of NF-κB and decreased the levels of IL-6, IL-1ß and TNF-α in RAW264.7 cells. In addition, MTHF-Ca treatment inhibited ROS production, suppressed the recruitment of neutrophils and macrophages, and reduced the expression of inflammation related genes, including jnk, erk, nf-κb, myd88, p65, tnf-α, and il-1b in zebrafish larvae. SIGNIFICANCE: MTHF-Ca may play an anti-inflammatory role by reducing the recruitment of neutrophils and macrophages and keeping the low levels of proinflammatory mediators and cytokines. MTHF-Ca may have a potential role in the treatment of inflammatory diseases.


Assuntos
NF-kappa B , Peixe-Zebra , Camundongos , Animais , Peixe-Zebra/metabolismo , NF-kappa B/metabolismo , Cálcio , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Espécies Reativas de Oxigênio , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , Células RAW 264.7 , Cálcio da Dieta , Ácido Fólico , Lipopolissacarídeos/farmacologia
3.
Phytomedicine ; 109: 154613, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610112

RESUMO

BACKGROUND: Small cell lung cancer (SCLC) is an aggressive tumor with high brain metastasis (BM) potential. There has been no significant progress in the treatment of SCLC for more than 30 years. Cordycepin has shown the therapeutic potential for cancer by modulating multiple cellular signaling pathways. However, the effect and mechanism of cordycepin on anti-SCLC BM remain unknown. PURPOSE: In this study, we focused on the anti-SCLC BM effect of cordycepin in the zebrafish model and its potential mechanism. STUDY DESIGN AND METHODS: A SCLC xenograft model based on zebrafish embryos and in vitro cell migration assay were established. Cordycepin was administrated by soaking and microinjection in the zebrafish model. RNA-seq assay was performed to analyze transcriptomes of different groups. Geno Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed to reveal the underlying mechanism. Real-time qPCR was used to verify the effects of cordycepin on the key genes. RESULTS: Cordycepin showed lower cytotoxicity in vitro compared with cisplatin, anlotinib and etoposide, but showed comparable anti-proliferation and anti-BM effects in zebrafish SCLC xenograft model. Cordycepin showed significant anti-SCLC BM effects when administrated by both soaking and microinjection. RNA-seq demonstrated that cordycepin was involved in vitamin D metabolism, lipid transport, and proteolysis in cellular protein catabolic process pathways in SCLC BM microenvironment in zebrafish, and was involved in regulating the expressions of key genes such as cyp24a1, apoa1a, ctsl. The anti-BM effect of cordycepin in SCLC was mediated by reversing the expression of these genes. CONCLUSION: Our work is the first to describe the mechanism of cordycepin against SCLC BM from the perspective of regulating the brain microenvironment, providing new evidence for the anti-tumor effect of cordycepin.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Animais , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/patologia , Peixe-Zebra , Neoplasias Pulmonares/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 1): 122044, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327810

RESUMO

Butyrylcholinesterase (BChE) and acetylcholinesterase (AChE) are two important cholinesterase enzymes in human metabolism which are closely related to various diseases of the liver. BChE and AChE are difficult to be distinguished due to their similarity in biochemical properties. Therefore, developing BChE-specific probes with high sensitivity and low background reading is desirable for the relevant biological applications. Herein, we reported the design and synthesis of a fluorescent probe HBT-BChE for biological detection and imaging of BChE. The probe is triggered by BChE-mediated hydrolysis, releasing a fluorophore that holds AIEE and ESIPT properties with large Stokes shift (>100 nm), rendering the probe features of low background interference and high sensitivity. The probe can also distinguish BChE from AChE with a low detection limit of 7.540 × 10-4 U/mL. Further in vitro studies have shown the ability of HBT-BChE to detect intracellular BChE activity, as well as to evaluate the efficiency of the BChE inhibitor. More importantly, the in vivo studies of imaging the BChE activity level in liver tissues using zebrafish as the model animal demonstrated the potential of HBT-BChE as a powerful tool for non-alcoholic fatty liver disease.


Assuntos
Butirilcolinesterase , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Peixe-Zebra/metabolismo , Corantes Fluorescentes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA