Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Tissue Eng Regen Med ; 21(1): 137-157, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847444

RESUMO

BACKGROUND: Thermal traumas impose a huge burden on healthcare systems. This merits the need for advanced but cost-effective remedies with clinical prospects. In this context, we prepared a regenerative 3D-construct comprising of Cassia angustifolia extract (SM) primed adipose-derived stem cells (ASCs) laden amniotic membrane for faster burn wound repair. METHODS: ASCs were preconditioned with SM (30 µg/ml for 24 h), and subsequently exposed to in-vitro thermal injury (51 °C,10 min). In-vivo thermal injury was induced by placing pre-heated copper-disc (2 cm diameter) on dorsum of the Wistar rats. ASCs (2.0 × 105) pre-treated with SM (SM-ASCs), cultured on stromal side of amniotic membrane (AM) were transplanted in rat heat-injury model. Non-transplanted heat-injured rats and non-heat-injured rats were kept as controls. RESULTS: The significantly upregulated expression of IGF1, SDF1A, TGFß1, VEGF, GSS, GSR, IL4, BCL2 genes and downregulation of BAX, IL6, TNFα, and NFkB1 in SM-ASCs in in-vitro and in-vivo settings confirmed its potential in promoting cell-proliferation, migration, angiogenesis, antioxidant, cell-survival, anti-inflammatory, and wound healing activity. Moreover, SM-ASCs induced early wound closure, better architecture, normal epidermal thickness, orderly-arranged collagen fibers, and well-developed skin appendages in healed rat-skin transplanted with AM+SM-ASCs, additionally confirmed by increased expression of structural genes (Krt1, Krt8, Krt19, Desmin, Vimentin, α-Sma) in comparison to untreated-ASCs laden-AM transplanted in heat injured rats. CONCLUSION: SM priming effectively enabled ASCs to counter thermal injury by significantly enhancing cell survival and reducing inflammation upon transplantation. This study provides bases for development of effective combinational therapies (natural scaffold, medicine, and stem cells) with clinical prospects for treating burn wounds.


Assuntos
Queimaduras , Senna , Ratos , Animais , Ratos Wistar , Cicatrização , Pele/lesões , Queimaduras/terapia
2.
Arch Virol ; 167(6): 1387-1404, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35462594

RESUMO

Using viruses to our advantage has been a huge leap for humanity. Their ability to mediate horizontal gene transfer has made them useful tools for gene therapy, vaccine development, and cancer treatment. Adenoviruses, adeno-associated viruses, retroviruses, lentiviruses, alphaviruses, and herpesviruses are a few of the most common candidates for use as therapeutic agents or efficient gene delivery systems. Efforts are being made to improve and perfect viral-vector-based therapies to overcome potential or reported drawbacks. Some preclinical trials of viral vector vaccines have yielded positive results, indicating their potential as prophylactic or therapeutic vaccine candidates. Utilization of the oncolytic activity of viruses is the future of cancer therapy, as patients will then be free from the harmful effects of chemo- or radiotherapy. This review discusses in vitro and in vivo studies showing the brilliant therapeutic potential of viruses.


Assuntos
Herpesviridae , Neoplasias , Vacinas Virais , Adenoviridae/genética , Terapia Genética/métodos , Vetores Genéticos/genética , Herpesviridae/genética , Humanos , Neoplasias/genética , Neoplasias/terapia , Desenvolvimento de Vacinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA