Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Res ; 1814: 148436, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268248

RESUMO

Physical exercise benefits Parkinson's disease (PD) patients but the mechanism is unclear. Cannabinoid receptor type 1 (CB1R) is known to be reduced in PD patients and animal models. We test the hypothesis that binding of the CB1R inverse agonist, [3H]SR141716A, is normalized by treadmill exercise in the toxin-induced 6-hydroxydopamine (6-OHDA) model of PD. Male rats had unilateral striatal injections of 6-OHDA or saline. After 15 days, half were submitted to treadmill exercise and half remained sedentary. [3H]SR141716A autoradiography was performed in postmortem tissue from striatum, substantia nigra (SN) and hippocampus. There was a 41% decrease of [3H]SR141716A specific binding in the ipsilateral SN of 6-OHDA-injected sedentary animals which was attenuated to 15% by exercise, when compared to saline-injected animals. No striatal differences were observed. A 30% bilateral hippocampal increase was observed in both healthy and 6-OHDA exercised groups. In addition, a positive correlation between nigral [3H]SR141716A binding and nociceptive threshold was observed in PD-exercised animals (p = 0.0008), suggesting a beneficial effect of exercise in the pain associated with the model. Chronic exercise can reduce the detrimental effects of PD on nigral [3H]SR141716A binding, similar to the reported reduction after dopamine replacement therapy, so should be considered as an adjunct therapy for PD.


Assuntos
Doença de Parkinson , Ratos , Masculino , Animais , Doença de Parkinson/metabolismo , Oxidopamina/farmacologia , Ratos Wistar , Agonismo Inverso de Drogas , Rimonabanto/metabolismo , Rimonabanto/farmacologia , Substância Negra/metabolismo , Corpo Estriado/metabolismo , Hipocampo/metabolismo , Receptores de Canabinoides/metabolismo , Modelos Animais de Doenças
2.
Neurotox Res ; 41(5): 459-470, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37266893

RESUMO

Pain is a common non-motor symptom of Parkinson's disease (PD), which often occurs in the early disease stages. Despite the high prevalence, it remains inadequately treated. In a hemi-parkinsonian rat model, we aimed to investigate the neurochemical factors involved in orofacial pain development, with a specific focus on pain-related peptides and cannabinoid receptors. We also evaluated whether treadmill exercise could improve orofacial pain and modulate these mechanisms. Rats were unilaterally injected in the striatum with either 6-hydroxydopamine (6-OHDA) or saline. Fifteen days after stereotactic surgery, the animals were submitted to treadmill exercise (EX), or remained sedentary (SED). Pain assessment was performed before the surgical procedure and prior to each training session. Pain-related peptides, substance P (SP), calcitonin gene-related peptide (CGRP), and transient receptor potential vanilloid type 1 (TRPV1) activation and cannabinoid receptor type 1 (CB1) and type 2 (CB2) were evaluated in the trigeminal nucleus. In order to confirm the possible involvement of cannabinoid receptors, we also injected antagonists of CB1 and CB2 receptors. We confirmed the presence of orofacial pain after unilateral 6-OHDA-injection, which improved after aerobic exercise training. We also observed increased pain-related expression of SP, CGRP and TRPV1 and decreased CB1 and CB2 in the trigeminal ganglion and caudal spinal trigeminal nucleus in animals with PD, which was reversed after aerobic exercise training. In addition, we confirm the involvement of cannabinoid receptors since both antagonists decreased the nociceptive threshold of PD animals. These data suggest that aerobic exercise effectively improved the orofacial pain associated with the PD model, and may be mediated by pain-related neuropeptides and cannabinoid receptors in the trigeminal system.


Assuntos
Neuropeptídeos , Doença de Parkinson , Ratos , Animais , Doença de Parkinson/complicações , Doença de Parkinson/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Oxidopamina/toxicidade , Dor Facial , Modelos Animais de Doenças
3.
Curr Neuropharmacol ; 21(5): 1241-1272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36797611

RESUMO

Parkinson's disease (PD) is a debilitating neurodegenerative multisystem disorder leading to motor and non-motor symptoms in millions of individuals. Despite intense research, there is still no cure, and early disease biomarkers are lacking. Animal models of PD have been inspired by basic elements of its pathogenesis, such as dopamine dysfunction, alpha-synuclein accumulation, neuroinflammation and disruption of protein degradation, and these have been crucial for a deeper understanding of the mechanisms of pathology, the identification of biomarkers, and evaluation of novel therapies. Imaging biomarkers are non-invasive tools to assess disease progression and response to therapies; their discovery and validation have been an active field of translational research. Here, we highlight different considerations of animal models of PD that can be applied to future research, in terms of their suitability to answer different research questions. We provide the reader with important considerations of the best choice of model to use based on the disease features of each model, including issues related to different species. In addition, positron emission tomography studies conducted in PD animal models in the last 5 years are presented. With a variety of different species, interventions and genetic information, the choice of the most appropriate model to answer research questions can be daunting, especially since no single model recapitulates all aspects of this complex disorder. Appropriate animal models in conjunction with in vivo molecular imaging tools, if selected properly, can be a powerful combination for the assessment of novel therapies and developing tools for early diagnosis.


Assuntos
Doença de Parkinson , Animais , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Tomografia por Emissão de Pósitrons , Modelos Animais de Doenças , Progressão da Doença , Biomarcadores
5.
Neurosci Biobehav Rev ; 131: 1056-1075, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34688727

RESUMO

Parkinson's disease (PD) is a progressive disabling brain disorder. Physical exercise has been shown to alleviate the symptoms of PD and, consequently, improve patient quality of life. Exercise mechanisms involved in beneficial effects on PD have been widely investigated. This study aims to systematically review the literature on the use of treadmill exercise in PD animal models. The study was conducted according to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). Searches were conducted in MEDLINE, EMBASE, and ISI databases. In total, 78 studies were included. The dopaminergic system, behavior, neuroplasticity, neuroinflammation, mitochondria, and musculoskeletal systems were some of the outcomes evaluated by the selected studies. Based on the systematic review center for laboratory animal experimentation (SYRCLE) RoB tool, the methodologies revealed a high risk of bias and lack of information about study design, which needs attention for data reproducibility. This review can guide future studies that aim to fill existing gaps regarding the effects of treadmill exercise in PD animal models.


Assuntos
Doença de Parkinson , Animais , Modelos Animais de Doenças , Exercício Físico , Humanos , Qualidade de Vida , Reprodutibilidade dos Testes
6.
Dement Neuropsychol ; 15(1): 41-50, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33907596

RESUMO

Clinical trials of the effects of physical activity have reported improvements in symptoms and quality of life in patients with Parkinson's disease (PD). Additionally, morphological brain changes after exercising were reported in PD animal models. However, these lifestyle-related changes were not evaluated in postmortem brain tissue. OBJECTIVE: We aimed to evaluate, by immunohistochemistry, astrocytes, tyrosine hydroxylase (TH) and structural proteins expression (neurofilaments and microtubules - MAP2) changes in postmortem brain samples of individuals with Lewy body pathology. METHODS: Braak PD stage≥III samples, classified by neuropathology analysis, from The Biobank for Aging Studies were classified into active (n=12) and non-active (n=12) groups, according to physical activity lifestyle, and paired by age, sex and Braak staging. Substantia nigra and basal ganglia were evaluated. RESULTS: Groups were not different in terms of age or gender and had similar PD neuropathological burden (p=1.00). We observed higher TH expression in the active group in the substantia nigra and the basal ganglia (p=0.04). Astrocytes was greater in the non-active subjects in the midbrain (p=0.03) and basal ganglia (p=0.0004). MAP2 levels were higher for non-active participants in the basal ganglia (p=0.003) and similar between groups in the substantia nigra (p=0.46). Neurofilament levels for non-active participants were higher in the substantia nigra (p=0.006) but not in the basal ganglia (p=0.24). CONCLUSION: Active lifestyle seems to promote positive effects on brain by maintaining dopamine synthesis and structural protein expression in the nigrostriatal system and decrease astrogliosis in subjects with the same PD neuropathology burden.


Estudos dos efeitos da atividade física relataram melhora nos sintomas e na qualidade de vida de pacientes com doença de Parkinson (DP). Além disso, alterações morfológicas do cérebro após o exercício físico foram relatadas em modelos animais da DP. No entanto, essas mudanças relacionadas ao estilo de vida não foram avaliadas em tecido cerebral post-mortem. OBJETIVO: Avaliar a expressão de astrócitos, tirosina hidroxilase (TH) e a expressão de proteínas estruturais (neurofilamentos e microtúbulos ­ MAP2) por imuno-histoquímica, em amostras cerebrais post-mortem de indivíduos com corpos de Lewy. MÉTODOS: Amostras com estágio de Braak para DP≥III, classificação neuropatológica, fornecidas pelo biobanco de estudos do envelhecimento foram classificadas em grupos ativos (n=12) e não ativos (n=12), de acordo com o estilo de vida (atividade física), e pareados por idade, sexo e estadiamento de Braak. Analisou-se a substância negra e gânglios da base. RESULTADOS: Idade, sexo e classificação para DP foram semelhantes (p=1,00). Observou-se maior expressão de TH no grupo ativo (p=0,04). Amostras de não ativos revelaram maior expressão de astrócitos no mesencéfalo (p=0,03) e nos gânglios da base (p=0,0004); MAP2 nos gânglios da base (p=0,003); os níveis de neurofilamentos foram maiores na substância negra (p=0,006). CONCLUSÃO: O estilo de vida ativo parece promover efeitos positivos no cérebro, mantendo a síntese de dopamina e a expressão estrutural de proteínas no sistema nigrostriatal e com diminuição da ativação de astrócitos em indivíduos com a mesma classificação neuropatológica para a DP.

7.
Behav Brain Res ; 387: 112607, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32199987

RESUMO

Parkinson's disease (PD) is typicaly caractherized by loss of dopaminergic neurons, as well as the presence of mitochondrial impairments. Although physical exercise is known to promote many beneficial effects in healthy subjects, such as enhancing mitocondrial biogenesis and function, it is not clear if these effects are evident after exercise in individuals with PD. The aim of this study was to investigate the effects of two different protocol durations on motor behavior (aphomorphine and gait tests), mitochondrial biogenesis signaling (PGC-1α, NRF-1 and TFAM), structure (oxidative phosphorylation system protein levels) and respiratory chain activity (complex I) in a unilateral PD rat model. For this, male Wistar rats were injected with 6-hydroxydopamine unilaterally into the striatum and submitted to an intermitent moderate treadmill exercise for one or four weeks. In the gait test, only stride width data revealed an improvement after one week of exercise. On the other hand, after 4 weeks of the exercise protocol all gait parameters analyzed and the aphomorphine test demonstrated a recovery. Analysis of protein revealed that one week of exercise was able to prevent PGC-1α and NRF-1 expression decrease in PD animals. In addition, after four weeks of physical exercise, besides PGC-1α and NRF-1, reduction in TFAM and complex I protein levels and increased complex I activity were also prevented in PD animals. Thus, our results suggest a neuroprotective and progressive effect of intermittent treadmill exercise, which could be related to its benefits on mitochondrial biogenesis signaling and respiratory chain modulation of the dopaminergic system in PD.


Assuntos
Mitocôndrias/metabolismo , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Condicionamento Físico Animal , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Marcha , Masculino , Estresse Oxidativo/efeitos dos fármacos , Oxidopamina/administração & dosagem , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/prevenção & controle , Parte Compacta da Substância Negra/patologia , Ratos Wistar , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA