Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemosphere ; 288(Pt 2): 132538, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34648788

RESUMO

Seven biochars (BCs) obtained from pyrolysis or gasification of different vegetal feedstocks were thoroughly characterized in comparison with three commercial activated carbons (ACs) routinely used in drinking water treatment plants. BCs and ACs characterization included the determinations of ash, iodine and methylene blue adsorption indexes, and the release of metals and polycyclic aromatic hydrocarbons, which were performed according to international standards applied for adsorption media to be used in drinking waters. Total specific surface area, micropore and mesopore specific surface area, pH of the point of zero charge, and the release of polychlorinated biphenyls were also determined in all chars. Principal component analysis and cluster analysis were performed in order to summarize the complex set of information deriving from the aforementioned characterizations, highlighting the BC most similar (BC6 from high temperature gasification of woody biomass) and most different (BC7 from low-temperature pyrolysis of corn cob) from ACs. These BCs were studied for their adsorption in ultrapure water towards diiodoacetic acid (an emergent disinfection by-product), benzene, and 1.2-dichlorobenzene, in comparison with ACs, and results obtained were fitted by linearized Freundlich equation. Overall, BC6 showed higher sorption performances compared to BC7, even though both BCs were less performing sorbents than ACs. However, the sorption properties of BCs were maintained also in real water samples collected from drinking water treatment plants.


Assuntos
Poluentes Ambientais , Purificação da Água , Carvão Vegetal , Filtração
2.
Toxics ; 9(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923920

RESUMO

Pharmaceuticals and hormones (PhACs) enter the aquatic environment in multiple ways, posing potential adverse effects on non-target organisms. They have been widely detected in drinking water sources, challenging water companies to reassure good quality drinking water. The aim of this study was to evaluate the concentration of sixteen PhACs in both raw and treated drinking water sources in the Metropolitan Area of Turin-where Società Metropolitana Acque Torino (SMAT) is the company in charge of the water cycle management-and evaluate the potential human health risks associated to these compounds. Multivariate spatial statistical analysis techniques were used in order to characterize the areas at higher risk of pollution, taking into account the already existing SMAT sampling points' network. Health risks were assessed considering average detected concentrations and provisional guideline values for individual compounds as well as their combined mixture. As reported in the just-issued Drinking Water Directive 2020/2184/UE, in order to establish priority substances, a risk assessment of contaminants present in raw drinking water sources is required for monitoring, identifying potential health risks and, if necessary, managing their removal. The results showed negligibly low human health risks in both raw water sources and treated water.

3.
Molecules ; 26(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572434

RESUMO

Perfluoroalkyl substances (PFAS) represent one of the most recalcitrant class of compounds of emerging concern and their removal from water is a challenging goal. In this study, we investigated the removal efficiency of three selected PFAS from water, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and pefluorooctanesulfonic acid (PFOS) using a custom-built non-thermal plasma generator. A modified full factorial design (with 2 levels, 3 variables and the central point in which both quadratic terms and interactions between couple of variables were considered) was used to investigate the effect of plasma discharge frequency, distance between the electrodes and water conductivity on treatment efficiency. Then, the plasma treatment running on optimized conditions was used to degrade PFAS at ppb level both individually and in mixture, in ultrapure and groundwater matrices. PFOS 1 ppb exhibited the best degradation reaching complete removal after 30 min of treatment in both water matrices (first order rate constant 0.107 min-1 in ultrapure water and 0.0633 min-1 in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 83%, respectively. During plasma treatment, the production of reactive species in the liquid phase (hydroxyl radical, hydrogen peroxide) and in the gas phase (ozone, NOx) was investigated. Particular attention was dedicated to the nitrogen balance in solution where, following to NOx hydrolysis, total nitrogen (TN) was accumulated at the rate of up to 40 mgN L-1 h-1.


Assuntos
Ácidos Alcanossulfônicos/metabolismo , Caproatos/metabolismo , Caprilatos/metabolismo , Fluorocarbonos/metabolismo , Água Subterrânea/química , Gases em Plasma/química , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Ácidos Alcanossulfônicos/análise , Ácidos Alcanossulfônicos/isolamento & purificação , Caproatos/análise , Caproatos/isolamento & purificação , Caprilatos/análise , Caprilatos/isolamento & purificação , Fluorocarbonos/análise , Fluorocarbonos/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/isolamento & purificação
4.
Sci Rep ; 10(1): 20247, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33219238

RESUMO

The active herbicide ingredient glyphosate [N-(phosphonomethyl)glycine] is frequently detected as a contaminant in groundwater and surface waters. This study investigated effects of UV-A (365 nm), UV-B (302 nm) and UV-C (254 nm) irradiation of glyphosate in water on photolysis and toxicity to aquatic organisms from different trophic levels. A test battery with bacteria (Bacillus subtilis, Aliivibrio fischeri), a green microalga (Raphidocelis subcapitata), and a crustacean (Daphnia magna) was used to assess biological effect of glyphosate and bioactive transformation products before and after UV irradiation (4.7-70 J/cm2). UV-C irradiation at 20 J/cm2 resulted in a 2-23-fold decrease in toxicity of glyphosate to aquatic test organisms. UV-B irradiation at 70 J/cm2 caused a twofold decrease whereas UV-A did not affect glyphosate toxicity at doses ≤ 70 J/cm2. UV-C irradiation of glyphosate in drinking water and groundwater with naturally occurring organic and inorganic constituents showed comparable or greater reduction in toxicity compared to irradiation in deionized water. High-resolution mass spectrometry analyses of samples after UV-C irradiation showed > 90% decreases in glyphosate concentrations and the presence of multiple transformation products. The study suggests that UV mediated indirect photolysis can decrease concentrations of glyphosate and generate less toxic products with decreased overall toxicity to aquatic organisms.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Raios Ultravioleta , Poluentes Químicos da Água/toxicidade , Animais , Glicina/toxicidade , Glifosato
5.
Langmuir ; 36(2): 540-545, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31874563

RESUMO

T1-weighted magnetic resonance images of water in the surroundings of a Nafion surface allowed the identification of the presence of a low-mobility zone (LMZ), 60 µm thick, consisting of water molecules structured in a hydrogen-bonding network, promoted by the presence of the acidic protons on the surface of the sulphonated polymer. In parallel, the exclusion zone (EZ) was assessed by observing in optical microscopy the distribution of microspheres suspended in the medium in contact with the Nafion membrane. It was found that the LMZ and the EZ do not correspond: in fact, the former is thinner and more stable over time than the latter and they behave differently when ions are present in the medium in which Nafion is immersed.

6.
J Chromatogr A ; 1605: 360350, 2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31378527

RESUMO

According to the recent proposal released by the European Commission for the revision of the 98/83/EC Directive, water suppliers will be requested to monitor the nine bromine- and chlorine congeners of haloacetic acids, HAAs, as well as the oxyhalides chlorite and chlorate, as disinfection by-products (DBPs) originated during the potabilization process. In this work, we propose a direct-injection method based on ion chromatography and mass spectrometric detection for the determination of the mentioned DBPs as well as bromate (already included in the 98/83/EC), implemented also for the following emerging HAAs monoiodo-, chloroiodo- and diiodo-acetic acids. The method was optimized to include the fifteen compounds in the same analytical run, tuning the chromatographic (column and gradient) and detection conditions (suppression current, transitions, RF lens settings and collision energies). To avoid matrix effect and to manage the instrumental conditions, optimization was performed directly in drinking water matrix. The method quantitation limits satisfy the new limits imposed by the future directive and range from 0.08 µg/L (monobromoacetic acid) to 0.34 µg/L (trichloroacetic acid). The performance of the method was checked along different strategic sampling points of three potabilization plants serving the city of Turin (Italy), including intermediate treatments and finished waters. Recovery was checked according to the ±30% limit of acceptability set by EPA regulations. The effect of disproportionate concentrations of chlorite and chlorate in respect to HAAs on HAA signals was studied; this aspect is underestimated in literature. The method is routinely applied by the potabilization plant of the city of Turin to confirm the effectiveness of all control measures in abstraction, treatment, distribution and storage. This study represents the first example in Italy of development and use of a cutting-edge technique for HAAs analysis along the potabilization processes.


Assuntos
Cromatografia , Desinfecção , Água Potável/análise , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Acetatos/análise , Bromatos/análise , Cloretos/análise , Cloro/análise , Cidades , Água Potável/normas , Itália , Abastecimento de Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA