Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22126, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092793

RESUMO

Sperm transcriptomics provide insights into subtle differences in sperm fertilization competence. For predicting the success of complex traits like male fertility, identification of hub genes involved in various sperm functions are essential. The bulls from the transcriptome profiled samples (n = 21), were grouped into good and poor progressive motility (PM), acrosome integrity (AI), functional membrane integrity (FMI) and fertility rate (FR) groups. The up-regulated genes identified in each group were 87, 470, 1715 and 36, respectively. Gene networks were constructed using up- and down-regulated genes from each group. The top clusters from the upregulated gene networks of the PM, AI, FMI and FR groups were involved in tyrosine kinase (FDR = 1.61E-11), apoptosis (FDR = 1.65E-8), translation (FDR = 2.2E-16) and ribosomal pathway (FDR = 1.98E-21), respectively. From the clusters, the hub genes were identified and validated in a fresh set of semen samples (n = 12) using RT-qPCR. Importantly, the genes (fold change) RPL36AL (14.99) in AI, EIF5A (54.32) in FMI, and RPLP0 (8.55) and RPS28 (13.42) in FR were significantly (p < 0.05) up-regulated. The study suggests that the expression levels of MAPK3 (PM), RPL36AL + RPS27A or RPL36AL + EXT2 (AI), RPL36AL or RPS27A (FMI) and RPS18 + RPS28 (FR) are potential markers for diagnosing the semen quality and fertility status of bulls which can be used for the breeding program.


Assuntos
Bison , Preservação do Sêmen , Animais , Masculino , Análise do Sêmen , Búfalos/genética , Sêmen , Motilidade dos Espermatozoides/genética , Criopreservação , Espermatozoides , Fertilidade/genética
2.
Syst Biol Reprod Med ; 69(5): 366-378, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37225677

RESUMO

Sperm antigenicity has been implicated as a regulatory factor for acquiring fertilizing competence in the female reproductive tract. Overt immune response against the sperm proteins leads to idiopathic infertility. Hence, the aim of the study was to evaluate the influence of the auto-antigenic potential of sperm on the antioxidant status, metabolic activities and reactive oxygen species (ROS) in bovine. Semen from Holstein-Friesian bulls (n = 15) was collected and classified into higher (HA, n = 8) and lower (LA, n = 7) antigenic groups based on micro-titer agglutination assay. The neat semen was subjected to the evaluation of bacterial load, leukocyte count, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lipid peroxidation (LPO) levels. Antioxidant activities in seminal plasma and intracellular ROS levels in the post-thawed sperm were estimated. The number of leukocytes was lower (p < .05) in the HA than the LA semen. The percentage of metabolically active sperm was higher (p < .05) in HA than the LA group. The activities of total non-enzymatic antioxidant, superoxide dismutase (SOD) and catalase (CAT) were higher (p < .05) while glutathione peroxidase activity was lower (p < .05) in the seminal plasma of LA group. The LPO levels of neat sperm and the percentage sperm positive for intracellular ROS in the cryopreserved sample were lower (p < .05) in the HA group. Auto-antigenic levels were positively correlated with the percentage of metabolically active sperm (r = 0.73, p < .01). However, the seminal auto-antigenicity was negatively (p < .05) correlated with the levels of SOD (r=-0.66), CAT (r=-0.72), LPO (r=-0.602) and intracellular ROS (r=-0.835). The findings were represented in graphical abstract. It is inferred that the higher auto-antigenic levels protect the quality of bovine semen by promoting sperm metabolism and lowering ROS and LPO levels.


Assuntos
Antioxidantes , Sêmen , Bovinos , Animais , Masculino , Feminino , Antioxidantes/metabolismo , Sêmen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Espermatozoides/metabolismo , Análise do Sêmen , Criopreservação , Superóxido Dismutase/metabolismo , Motilidade dos Espermatozoides
3.
Cell Tissue Res ; 393(1): 181-199, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37079096

RESUMO

The study aimed to assess the influence of cryostress on RNA integrity and functional significance in sperm fertilizing ability. The fresh and post-thawed buffalo sperm (n = 6 each) samples were evaluated for their functional attributes, and sperm total RNA was subjected to transcriptome sequencing followed by validation using real-time PCR and dot blot. Overall, 6911 genes had an expression of FPKM > 1, and among these 431 genes were abundantly expressed (FPKM > 20) in buffalo sperm. These abundantly expressed genes regulate reproductive functions such as sperm motility (TEKT2, SPEM1, and PRM3, FDR = 1.10E-08), fertilization (EQTN, PLCZ1, and SPESP1, FDR = 7.25E-06) and the developmental process involved in reproduction (SPACA1, TNP1, and YBX2, FDR = 7.21E-06). Cryopreservation significantly (p < 0.05) affected the structural and functional membrane integrities of sperm. The expression levels of transcripts that regulate the metabolic activities and fertility-related functions were compromised during cryopreservation. Interestingly, cryostress induces the expression of genes involved (p < 0.05) in chemokine signaling (CX3CL1, CCL20, and CXCR4), G-protein coupled receptor binding (ADRB1, EDN1, and BRS3), translation (RPS28, MRPL28, and RPL18A), oxidative phosphorylation (ND1, ND2, and COX2), response to reactive oxygen species (GLRX2, HYAL2, and EDN1), and immune responses (CX3CL1, CCL26, and TBXA2R). These precociously expressed genes during cryopreservation alter the signaling mechanisms that govern sperm functional competence and can impact fertilization and early embryonic development.


Assuntos
Bison , Preservação do Sêmen , Gravidez , Animais , Feminino , Masculino , Búfalos/genética , Sêmen , Motilidade dos Espermatozoides , Espermatozoides/fisiologia , Fertilização , Criopreservação , RNA
4.
Gene ; 839: 146727, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35835407

RESUMO

The role of sperm expressed X-linked genes on bull fertility has not been studied in detail. The objective of the present study was to assess the influence of X-linked genes on the sperm functional parameters and field fertility rate in the Holstein Friesian cattle (n = 12) and Murrah buffalo (n = 7) bulls. The enrichment analysis (cattle = 8; buffalo = 8) of the X-linked genes was carried out using retrospective RNA-seq data and mRNA expression levels of functionally relevant genes were validated using the RT-qPCR. The mRNA expression levels of these genes were functionally associated with sperm attributes and field fertility rate. The sperm transcriptome studies revealed that the total number of expressed genes and the transcript content of the X-linked genes in the mature sperm were very low in both species, and only 23.31% of these genes were commonly expressed between them. The transcript pool corresponding to the X-linked genes represents embryonic organ development (p = 0.03) and reproduction (p = 0.02) processes in cattle and buffalo sperm, respectively. The mRNA expression levels of X-linked genes, RPL10 and ZCCHC13 in cattle; AKAP4, TSPAN6, RPL10 and RPS4X in buffalo were significantly (p < 0.05) correlated with sperm kinematics. Importantly, the mRNA expression levels of the genes RPL10 (r = -0.68) and RPS4X (r = 0.81) had a significant correlation with the field fertility rate in cattle and buffalo, respectively. Multivariate regression models and receiver operating curve analysis suggest that the mRNA expression levels of X-linked genes may be useful in predicting bull fertility. The study indicates that sperm-expressed X-linked genes influence semen quality and field fertility rate in both cattle and buffalo.


Assuntos
Genes Ligados ao Cromossomo X , Análise do Sêmen , Animais , Cruzamento , Búfalos/genética , Bovinos/genética , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estudos Retrospectivos , Sêmen , Análise do Sêmen/veterinária , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo , Cromossomo X/genética
5.
Cell Tissue Res ; 385(1): 207-222, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33783607

RESUMO

Deciphering sperm transcriptome is the key to understanding the molecular mechanisms governing peri-fertilization, embryonic development, and pregnancy establishment. This study aimed to profile sperm transcriptome to identify signature transcripts regulating male fertility. Semen samples were collected from 47 bulls with varied fertility rates. The sperm total RNA was isolated (n = 8) and subjected to transcriptome sequencing. Based on the expression pattern obtained from RNA profiling, the bulls were grouped (p = 0.03) into high-fertile and sub-fertile, and signature transcripts controlling sperm functions and fertility were identified. The results were validated using the OMIM database, qPCR, and sperm function tests. The sperm contains 1100 to 1700 intact transcripts, of which BCL2L11 and CAPZA3 were abundant and associated (p < 0.05) with spermatogenesis and post-embryonic organ morphogenesis. The upregulated genes in the acrosome integrity and functional membrane integrity groups had a close association with the fertility rate. The biological functions of these upregulated genes (p < 0.05) in the high-fertile bulls were associated with spermatogenesis (AFF4 and BRIP1), sperm motility (AK6 and ATP6V1G3), capacitation and zona binding (AGFG1), embryo development (TCF7 and AKIRIN2), and placental development (KRT19). The transcripts involved in pathways regulating embryonic development such as translation (EEF1B2 and MTIF3, p = 8.87E-05) and nonsense-mediated decay (RPL23 and RPL7A, p = 5.01E-27) were upregulated in high-fertile bulls. The identified transcripts may significantly impact oocyte function, embryogenesis, trophectoderm development, and pregnancy establishment. In addition, the study also reveals that the genes governing sperm functional membrane integrity and acrosome integrity have a prospective effect on male fertility.


Assuntos
Acrossomo/fisiologia , Fertilidade/genética , Espermatozoides/fisiologia , Transcriptoma/fisiologia , Animais , Bovinos , Masculino
7.
Cell Tissue Res ; 383(2): 881-903, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33151454

RESUMO

Sperm carries a reservoir of proteins regulating the molecular functions to attain functional competence. Semen samples collected from buffalo bulls were assessed for sperm functional attributes (n = 11) and proteome profiling (n = 6). Sperm proteins were extracted and profiled by employing LC-MS/MS. Overall, the buffalo sperm contained 1365 proteins, of which 458 were common between the groups. The unique proteins were 477 and 430 in good and poor quality semen, respectively. In the whole proteome of buffalo sperm, sexual reproduction with phosphatidylethanolamine-binding protein1 (PEBP1), fetuin-B (FETUB) and acrosin (ACR) was the most enriched (p = 8.44E-19) biological process, also with thermogenesis (p = 0.003), oocyte meiosis (p = 0.007) and vascular smooth muscle contraction (p = 0.009) apart from metabolic pathways. In good quality semen, mesenchyme migration (p = 1.24E-07) and morphogenesis (p = 0.001) were abundant biological processes. In good quality semen, the fluid shear stress (p = 0.01) and, in poor quality semen, valine, leucine and isoleucine degradation (p = 3.8E-05) pathways were enriched. In good quality semen, 7 proteins were significantly (p < 0.05) upregulated and 33 proteins were significantly (p < 0.05) downregulated. On validating the abundantly expressed sperm proteins, serine protease inhibitor Kazal-type 2-like (SPINK2; 2.17-fold) and neddylin (NEDD8; 1.13-fold) were upregulated and YBX2 was downregulated (0.41-fold) in good quality semen as compared with poor quality semen (1-fold). The present findings revealed the importance of sperm proteins in oocyte maturation, fertilization process and early embryonic development. The variations in the proteomic composition can be used as potential markers for the selection of breeding bulls.


Assuntos
Búfalos/metabolismo , Proteoma/metabolismo , Sêmen/metabolismo , Transdução de Sinais , Espermatozoides/metabolismo , Animais , Ontologia Genética , Masculino , Espectrometria de Massas , Meiose , Contração Muscular/fisiologia , Músculo Liso/fisiologia , Oócitos/citologia , Proteômica , Reprodutibilidade dos Testes
8.
Reprod Domest Anim ; 55(8): 998-1010, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32515513

RESUMO

The region-specific expression of seminal proteins in testis and excurrent duct system determines the quality and function of the spermatozoa. In the present study, localization and expression of some of the seminal proteins such as insulin-like growth factor receptor 1ß (IGF-1Rß), phosphatidylethanolamine-binding protein 4 (PEBP4), α-tubulin and tissue factor pathway inhibitor 2 (TFPI2) were carried out in testis, excurrent duct system and spermatozoa of buffalo. IGF-1Rß was localized in the cells of the seminiferous tubules of the testis, except in primary spermatocytes. The PEBP4 was localized only in the elongated spermatid, whereas α-tubulin and TFPI2 proteins were localized in all cells of the seminiferous tubule including spermatocyte. In the buffalo spermatozoa, IGF-1Rß, PEBP4, α-tubulin and TFPI2 were localized in the acrosome region, the post-acrosomal region till the tail end, post-acrosome to the entire tail region and the equatorial region, respectively. The study indicates that IGF-1R, α-tubulin and PEBP4 proteins regulate spermatogenesis, whereas TFPI2 may be involved during the zona binding process of the buffalo spermatozoa.


Assuntos
Búfalos/fisiologia , Proteínas de Plasma Seminal/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , Animais , Masculino , Análise do Sêmen , Túbulos Seminíferos , Espermatócitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA