RESUMO
The formation of a lytic immunological synapse (IS) is crucial for cytotoxic lymphocytes to accurately target and effectively eliminate malignant cells. While significant attention has been focused on the lymphocyte side of the IS, particularly its role as a secretory domain for lytic granules, the cancer cell side of the IS has remained relatively underexplored. Recent findings have revealed that cancer cells can rapidly polarize their actin cytoskeleton toward the IS upon interaction with natural killer (NK) cells, thereby evading NK cell-mediated cytotoxicity. In this Brief Research Report, we present preliminary findings suggesting that actin cytoskeleton remodeling at the cancer cell side of the IS is associated with the targeted secretion of small extracellular vesicles towards the interacting NK cell. We observed that multivesicular bodies (MVBs) preferentially accumulate in the synaptic region in cancer cells exhibiting synaptic accumulation of F-actin, compared to those lacking actin cytoskeleton remodeling. Extracellular immunofluorescence staining revealed increased surface exposure of CD63 at the cancer cell side of the IS, suggestive of the fusion of MVBs with the plasma membrane. This hypothesis was supported by a pH-sensitive probe demonstrating dynamic trafficking of CD63 to the extracellular region of the IS. Collectively, our data support the notion that cancer cells can engage in targeted secretion of extracellular vesicles in response to NK cell attack, underscoring the need for further research into the potential role of this process in facilitating cancer cell immune evasion.
Assuntos
Sinapses Imunológicas , Células Matadoras Naturais , Humanos , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Citoesqueleto de Actina/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Corpos Multivesiculares/metabolismo , Corpos Multivesiculares/imunologia , Linhagem Celular Tumoral , Tetraspanina 30/metabolismo , Actinas/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Citotoxicidade ImunológicaRESUMO
BACKGROUND: Even acknowledging the game-changing results achieved in the treatment of metastatic melanoma with the use of immune checkpoint inhibitors (ICI), a large proportion of patients (40-60%) still fail to respond or relapse due to the development of resistance. Alterations in the expression of Human Leukocyte Antigen class I (HLA-I) molecules are considered to play a major role in clinical resistance to ICI. Cellular immunotherapy with HLA-independent CAR-redirected lymphocytes is a promising alternative in this challenging setting and dedicated translational models are needed. METHODS: In this study, we propose an HLA-independent therapeutic strategy with Cytokine Induced Killer lymphocytes (CIK) genetically engineered with a Chimeric Antigen Receptor (CAR) targeting the tumor antigen CSPG4 as effector mechanism. We investigated the preclinical antitumor activity of CSPG4-CAR.CIK in vitro and in a xenograft murine model focusing on patient-derived melanoma cell lines (Mel) with defective expression of HLA-I molecules. RESULTS: We successfully generated CSPG4-CAR.CIK from patients with metastatic melanoma and reported their intense activity in vitro against a panel of CSPG4-expressing patient-derived Mel. The melanoma killing activity was intense, even at very low effector to target ratios, and not influenced by the expression level (high, low, defective) of HLA-I molecules on target cells. Furthermore, CAR.CIK conditioned medium was capable of upregulating the expression of HLA-I molecules on melanoma cells. A comparable immunomodulatory effect was replicated by treatment of Mel cells with exogenous IFN-γ and IFN-α. The antimelanoma activity of CSPG4-CAR.CIK was successfully confirmed in vivo, obtaining a significant tumor growth inhibition of an HLA-defective Mel xenograft in immunodeficient mice. CONCLUSIONS: In this study we reported the intense preclinical activity of CSPG4-CAR.CIK against melanoma, including those with low or defective HLA-I expression. Our findings support CSPG4 as a valuable CAR target in melanoma and provide translational rationale for clinical studies exploring CAR-CIK cellular immunotherapies within the challenging setting of patients not responsive or relapsing to immune checkpoint inhibitors.
Assuntos
Melanoma , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Citocinas , Receptores de Antígenos Quiméricos/genética , Inibidores de Checkpoint Imunológico , Imunoterapia Adotiva/métodos , Recidiva Local de Neoplasia , Melanoma/genética , Melanoma/terapia , Imunoterapia , Linfócitos/patologia , Proteínas de Membrana , Proteoglicanas de Sulfatos de CondroitinaRESUMO
Natural killer (NK) cells are innate effector lymphocytes with strong antitumor effects against hematologic malignancies such as chronic lymphocytic leukemia (CLL). However, NK cells fail to control CLL progression on the long term. For effective lysis of their targets, NK cells use a specific cell-cell interface, known as the immunological synapse (IS), whose assembly and effector function critically rely on dynamic cytoskeletal changes in NK cells. Here we explored the role of CLL cell actin cytoskeleton during NK cell attack. We found that CLL cells can undergo fast actin cytoskeleton remodeling which is characterized by a NK cell contact-induced accumulation of actin filaments at the IS. Such polarization of the actin cytoskeleton was strongly associated with resistance against NK cell-mediated cytotoxicity and reduced amounts of the cell-death inducing molecule granzyme B in target CLL cells. Selective pharmacological targeting of the key actin regulator Cdc42 abrogated the capacity of CLL cells to reorganize their actin cytoskeleton during NK cell attack, increased levels of transferred granzyme B and restored CLL cell susceptibility to NK cell cytotoxicity. This resistance mechanism was confirmed in primary CLL cells from patients. In addition, pharmacological inhibition of actin dynamics in combination with blocking antibodies increased conjugation frequency and improved CLL cell elimination by NK cells. Together our results highlight the critical role of CLL cell actin cytoskeleton in driving resistance against NK cell cytotoxicity and provide new potential therapeutic point of intervention to target CLL immune escape.