Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38091274

RESUMO

This study aimed at investigating the effect of hydrolyzed soya lecithin; also called lysolecithin or lysophosphatidylcholine, on growth performance, caecal microbiota and fat depots in pre-breeding primiparous rabbits does. For this, 60 V-Line primiparous rabbits does (5-6 months) were used in a 30-day experiment. Does were allotted into three iso-nitrogenous iso-caloric dietary treatments (n = 20/group) as follows: (1) CON received 0% soya lecithin, (2) LECL group was fed a basal diet supplemented with 0.5% soya lecithin and (3) LECH group was fed a basal diet supplemented with 1% soya lecithin. Growth performance indices were measured, caecum samples were collected for measurement of specific bacteria via qPCR, and several fat depots including periovarian fat were sampled for adipocyte morphometry and fatty acid profiling. Statistical analysis was performed using GLM procedures of SAS v9.4. Soya lecithin increased feed intake (p < 0.05). The abundance of caecal Bifidobacteria species, Ruminococcus species and phylum Butryvibrio-specific genes increased (p < 0.05) in rabbits receiving soya lecithin in their diet, soya lecithin increased the level of polyunsaturated fatty acids in subcutaneous and perirenal fat (p < 0.05) and increased the level of monounsaturated fatty acids in periovarian fat (p < 0.05); additionally, the adipocyte area increased in periovarian and perirenal fat (p < 0.05). In conclusion, soya lecithin at a dose of 0.5% increased feed intake and energy storage in adipocytes and improved the fatty acid profile of periovarian fat.

2.
Animal ; 15(10): 100362, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34583315

RESUMO

With growing concern about including unconventional dietary protein sources in poultry diets to substitute the protein sources that are essential for human consumption such as soybean meal, Azolla leaf meal (ALM) has grown in popularity. In our prior experiment, ALM was used at inclusion rates of 5 and 10%. Five per cent inclusion of ALM increased broiler chicken growth performance, the concentration of cecal propionic acid, and activation of skeletal muscle p70S6 Kinase1 (p70S6K1) without having detrimental effects on the meat quality. Those results prompted us to further evaluate the effect of the same inclusion rates of ALM on phase feeding and intestine and liver health of the broiler chicks. The current study hypothesis is that dietary ALM positively affects phase feeding, intestinal morphology and p70S6K1 activation, cecal microbial gene expression, and improves the liver energy status. For this, we enrolled 135 one-day-old broiler chicks and collected growth performance data (starter, grower, and finisher stages) and samples of the gastrointestinal tract to analyse the morphology of the villi, immune-related organs, mucin, and abundance of intestinal p70S6K1. Cecal bacterial species were analysed using qPCR and liver samples were collected to analyse adenosine monophosphate (AMP) and ATP content and selected oxidative stress biomarkers. ALM increased BW and feed intake during the starter and grower phases but did not affect the feed conversion ratio. Liver oxidative stress and AMP: ATP ratio increased in chickens fed on a diet containing 10% ALM (AZ10; P < 0.05). Jejunum villi length and abundance of duodenal neutral mucin increased but villi of the ileum decreased in chickens fed on a diet containing 5% ALM (AZ5), while lymphoid follicle areas of the cecal tonsils decreased with both doses of ALM. Activation of p70S6K1 increased with AZ10 in the duodenum and AZ5 in the jejunum. In the gut, the family of Enterobacteriaceae decreased with both ALM doses. In conclusion, our results indicate an overall positive effect of dietary inclusion of ALM in the broiler chicken diet via its positive effect on intestinal morphology and function; however, a negative effect on the liver was observed with 10% ALM.


Assuntos
Microbioma Gastrointestinal , Microbiota , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Galinhas , Dieta/veterinária , Suplementos Nutricionais/análise
3.
Animal ; 15(10): 100348, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34543996

RESUMO

Rapidly growing human populations and the increased need for high nutritive value meat in terms of low fat, high protein, and low sodium content are the driving reasons for the increase in rabbit meat production. However, dietary protein alternatives to sustain rabbit meat production, without competing with humans for strategic crops are needed. Therefore, the current study was conducted to investigate the effect of Azolla leaf meal (ALM) as a dietary protein source on growth performance, meat quality, and abundance and activation of Ribosomal protein S6 kinase ß1 (p70S6K1), a downstream target of mammalian target of rapamycin signalling pathway and, thus, a key player in the regulation of protein synthesis and muscle mass. For this purpose, 60 weaned male V-Line rabbits were blocked for the initial BW and randomly allotted into four dietary treatments, with 15 replicate per treatment (n = 15/group) as follows: (1) CON group was fed on basal diet contains 0% of ALM, (2) AZ10 group fed on diet containing 10% ALM, (3) AZ20 group fed on diet containing 20% ALM, and (4) AZ30 group fed on diet containing 30% ALM. Rabbits were raised individually, and the experimental period was 42 days. At the end of the experiment, rabbits were euthanised and blood and skeletal muscle samples were collected. Body weight and BW gain were the highest in AZ10 group (P = 0.01), while feed intake was the highest in AZ30 (P = 0.01), feed conversion ratio was the lowest in AZ10 and highest in AZ30 (P = 0.01). Dressing % was the highest in AZ10 and lowest in AZ30 groups (P = 0.01). Muscle cross-sectional area was low in both AZ20 and AZ30 groups compared to CON (P = 0.01). The lysine concentration of Longissimus lumborum muscle increased (P = 0.03) while isoleucine tended to decrease in AZ10 vs CON (P = 0.09). The phosphorylation ratio of skeletal muscle p70S6K1 increased in AZ10 and AZ20 groups (P = 0.05). Therefore, ALM could be included in a growing rabbit diet, up to 10%, while higher doses negatively alter production performance, meat quality, and feed efficiency of growing rabbits.


Assuntos
Ração Animal , Composição Corporal , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais , Masculino , Carne/análise , Músculo Esquelético/metabolismo , Coelhos , Proteínas Quinases S6 Ribossômicas/metabolismo
4.
J Dairy Sci ; 104(1): 1175-1182, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33162086

RESUMO

The objective of this study was to compare the transcription of gene markers for gastrointestinal (GI) epithelial cells, including fatty acid binding protein 2 (FABP2) and cytokeratin 8 (KRT8), and tight junction complex genes (TJP1, CLDN1, CLDN4) in fecal RNA against several GI tract tissue sections in dairy calves. Eight healthy Jersey calves were euthanized at 5 wk of age, and postmortem samples were collected from rumen, duodenum, jejunum, ileum, large intestine, cecum, and feces for total RNA isolation. Tissues and fecal samples were immediately frozen in liquid nitrogen until RNA isolation. A real-time quantitative PCR analysis was performed using a single standard curve composited of equal amounts of all samples, including cDNA from fecal and GI tract tissues. The mRNA expression of the tight junctions TJP1, CLDN1, and CLDN4 was greater in fecal RNA compared with lower GI tract tissues (i.e., duodenum, jejunum, ileum, large intestine, and cecum). Similar to fecal RNA, rumen tissue had greater expression of tight junctions CLDN1 and CLDN4 than lower GI tract tissues. Similarly, rumen tissue had greater expression of TPJ1 than all lower GI tract tissues except duodenum. The expression of TJP1 and CLDN4 was greater in fecal RNA than in rumen tissue; in contrast, CLDN1 mRNA expression was greater in rumen tissue than in the fecal RNA. The expression of FABP2 was greater in duodenum in comparison to all tissue except ileum. The mRNA expression of FABP2 in fecal samples was similar to jejunum and ileum. The expression of KRT8 in fecal samples was similar to duodenum, large intestine, and cecum. The fecal RNA had a greater expression of KRT8 in comparison to jejunum and ileum. The rumen tissue had the lowest mRNA expression of KRT8. The expression levels of FABP2, KRT8, and tight junction genes observed in fecal transcripts suggest that a considerable amount of RNA derived from GI tract epithelial cells can be detected in fecal RNA, which is in agreement with previous data in neonatal dairy calves and other biological models including humans, rodents, and primates. The greater expression of tight junctions in fecal RNA in comparison to sections of the low GI remains to be understood, and due to the importance of tight junctions in GI physiology, further clarification of this effect is warranted. The similarities in mRNA expression of FABP2 and KRT8 between fecal RNA and intestinal sections add up to the accumulating evidence that fecal RNA can be used to investigate molecular alterations in the GI tract of neonatal dairy calves. Further research in this area should include high-throughput transcriptomic analysis via RNA-seq to uncover novel molecular markers for specific sections of the GI tract of neonates.


Assuntos
Antígenos de Diferenciação/metabolismo , Biomarcadores/metabolismo , Bovinos/metabolismo , Trato Gastrointestinal/metabolismo , Mucosa Intestinal/metabolismo , RNA/metabolismo , Animais , Bovinos/anatomia & histologia , Ceco/metabolismo , Células Epiteliais/metabolismo , Fezes , Trato Gastrointestinal/citologia , Íleo/metabolismo , Mucosa Intestinal/citologia , Intestino Grosso , Jejuno/metabolismo , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Rúmen/metabolismo , Junções Íntimas , Transcriptoma
5.
J Dairy Sci ; 104(1): 1053-1072, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33189277

RESUMO

The transition from pregnancy to lactation is the most challenging period for high-producing dairy cows. The liver plays a key role in biological adaptation during the peripartum. Prior works have demonstrated that hepatic glucose synthesis, cholesterol metabolism, lipogenesis, and inflammatory response are increased or activated during the peripartum in dairy cows; however, those works were limited by a low number of animals used or by the use of microarray technology, or both. To overcome such limitations, an RNA sequencing analysis was performed on liver biopsies from 20 Holstein cows at 7 ± 5d before (Pre-P) and 16 ± 2d after calving (Post-P). We found 1,475 upregulated and 1,199 downregulated differently expressed genes (DEG) with a false discovery rate adjusted P-value < 0.01 between Pre-P and Post-P. Bioinformatic analysis revealed an activation of the metabolism, especially lipid, glucose, and amino acid metabolism, with increased importance of the mitochondria and a key role of several signaling pathways, chiefly peroxisome proliferators-activated receptor (PPAR) and adipocytokines signaling. Fatty acid oxidation and gluconeogenesis, with a likely increase in amino acid utilization to produce glucose, were among the most important functions revealed by the transcriptomic adaptation to lactation in the liver. Although gluconeogenesis was induced, data indicated decrease in expression of glucose transporters. The analysis also revealed high activation of cell proliferation but inhibition of xenobiotic metabolism, likely due to the liver response to inflammatory-like conditions. Co-expression network analysis disclosed a tight connection and coordination among genes driving biological processes associated with protein synthesis, energy and lipid metabolism, and cell proliferation. Our data confirmed the importance of metabolic adaptation to lipid and glucose metabolism in the liver of early Post-P cows, with a pivotal role of PPAR and adipocytokines.


Assuntos
Bovinos/metabolismo , Fígado/metabolismo , Prenhez/metabolismo , Transcriptoma , Adaptação Fisiológica , Animais , Biologia Computacional , Feminino , Gluconeogênese , Lactação , Metabolismo dos Lipídeos/fisiologia , Período Periparto , Período Pós-Parto/metabolismo , Gravidez , Regulação para Cima
6.
Animal ; 14(11): 2423-2432, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32613931

RESUMO

The interest in biodiesel production from oil-bearing seeds rather than soybean necessitates the scientific validation of other good quality protein sources that could substitute soybean meal in animal diets, particularly, broiler chickens where soybean meal constitutes a large portion of their diet. Therefore, the present study was conducted to investigate the effect of sun-dried Azolla leaf meal (ALM) as an unconventional dietary protein source in broiler chicken diet on growth performance, meat quality, skeletal muscle cell growth and protein synthesis through regulation of ribosomal protein S6 kinase (p70S6 kinase α). A total of 120 male Ross 308 broiler chicks were randomly allocated to three dietary treatments. Each treatment had four cages (i.e. replicates) with 10 birds/cage. The control group was fed with a corn-soy-based diet, the AZ5 group was supplemented with 5% ALM and the AZ10 group was supplemented with 10% ALM for 37 days. A 5-day trial was also conducted to measure the apparent nutrient digestibility. Growth performance parameters were measured weekly. At the end of the experiment, 12 birds from each group (3/cage) were euthanized and used for samplings. Inclusion of ALM tended to improve BW gain (P = 0.06) and increased feed intake (P < 0.01). Additionally, ALM decreased the percentage of breast meat cooking loss linearly (P < 0.01). In addition, ALM at a dose of 5% increased the production of propionate in the cecum (P = 0.01). Activation of breast muscle p70S6 kinase was higher when ALM was included in a dose-dependent manner (P < 0.01). The inclusion of ALM increased breast meat redness (P < 0.01); however, the lightness was within the normal range in all groups. Findings from our study suggest that ALM could be included in a broiler chicken diet up to 5% without any major negative effect on meat quality or performance, and it regulates muscle protein synthesis through activation of mammalian target of rapamycin/6S kinase signaling.


Assuntos
Ração Animal , Galinhas , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais , Masculino , Carne/análise , Músculo Esquelético , Distribuição Aleatória
8.
PLoS One ; 15(1): e0226070, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31923252

RESUMO

Conjugated linoleic acid (CLA) is known for its multiple benefits including improvement of growth, increasing lean mass, and anti-carcinogenic effects. However, when used in long-term supplementations CLA does not improve semen parameters in boar and bull and reduces fertility in Japanese quails. The content of unsaturated fatty acids in dietary lipids plays a significant role in spermatogenesis owning the high proportion of unsaturated fatty acids in plasma membrane of sperms. Whether CLA plays a role in testicular tissue and epididymal fat is still unknown. Therefore, in this study we hypothesize that long-term supplementation of equal proportion of CLA isomer mix (c9,t11-CLA and t10,c12- CLA) in rabbit bucks might alter male reproductive potentials. Twelve V-Line weaned male rabbits were used in 26 weeks trial, rabbits were individually raised and randomly allocated into three dietary groups. Control group (CON) received a basal diet, a group received 0.5% CLA (CLA 0.5%), and a group received 1% CLA (CLA 1%). Rabbits were euthanized at the end of the trial and several parameters were evaluated related to growth, semen quality, and testicular and epididymal tissue histopathology and transcriptome. The long-term supplementation of CLA increased feed intake by 5% and body weight by 2-3%. CLA 1% decreased sperm progressive motility. In testicular tissue L-carnitine and α-tocopherol were decreased by CLA supplementation. In epididymal fat, CLA tended to decrease concentration of polyunsaturated fatty acids, the expression of SCD5 gene was upregulated by CLA 1% and CASP3 gene was upregulated by CLA 0.5%. Transcription of PPARG was downregulated by CLA. Feeding 1% CLA also decreased testicular epithelial thickness. Long-term supplementation of CLA modestly enhanced male rabbit growth, but negatively impacted male reproduction, especially at high dose of CLA.


Assuntos
Apoptose , Ácidos Linoleicos Conjugados , Motilidade dos Espermatozoides , Espermatozoides , Animais , Masculino , Coelhos , Apoptose/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Carnitina/metabolismo , Suplementos Nutricionais , Regulação para Baixo/efeitos dos fármacos , Epididimo/metabolismo , Epididimo/patologia , Ácidos Graxos Insaturados/metabolismo , Ácidos Linoleicos Conjugados/farmacologia , PPAR gama/genética , PPAR gama/metabolismo , Análise do Sêmen , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Testículo/metabolismo , Testículo/patologia , Testosterona/sangue , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
J Dairy Sci ; 102(10): 9241-9258, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31378488

RESUMO

Subclinical ketosis (SCK) may impair white blood cell (WBC) function and thus contribute to the risk of disease postpartum. This preliminary study investigated changes occurring in the immune system before disease onset to elucidate their role in the occurrence of SCK. A group of 13 Holstein dairy cows were housed in tie-stalls and retrospectively divided into 2 groups based on their levels of ß-hydroxybutyrate (BHB) measured in plasma between calving day and 35 d from calving (DFC). Levels of BHB <1.4 mmol/L were found in 7 cows (control cows, CTR group) and levels >1.4 mmol/L were found in 6 cows at ≥1 of 6 time points considered (cows with SCK, KET group). From -48 to 35 DFC, body condition score, body weight, dry matter intake, rumination time, and milk yield were measured, and blood samples were collected regularly to assess the hematochemical profile and test the WBC function by ex vivo challenge assays. Data were submitted for ANOVA testing using a mixed model for repeated measurements that included health status and time and their interactions as fixed effects. Compared with CTR cows, KET cows had more pronounced activation of the immune system (higher plasma concentrations of proinflammatory cytokines, myeloperoxidase, and oxidant species, and greater IFN-γ responses to Mycobacterium avium), higher blood concentrations of γ-glutamyl transferase, and lower plasma concentrations of minerals before calving. Higher levels of nonesterified fatty acids, BHB, and glucose were detected in KET cows than in CTR cows during the dry period. The effect observed during the dry period was associated with a reduced dry matter intake, reduced plasma glucose, and increased fat mobilization (further increases in nonesterified fatty acids and BHB) during early lactation. A reduced milk yield was also detected in KET cows compared with CTR. The KET cows had an accentuated acute-phase response after calving (with greater concentrations of positive acute-phase proteins and lower concentrations of retinol than CTR cows) and impaired liver function (higher blood concentrations of glutamate-oxaloacetate transaminase and bilirubin). The WBC of the KET cows, compared with CTR cows, had a reduced response to an ex vivo stimulation assay, with lower production of proinflammatory cytokines and greater production of lactate. These alterations in the WBC could have been driven by the combined actions of metabolites related to the mobilization of lipids and the occurrence of a transient unresponsive state against stimulation aimed at preventing excessive inflammation. The associations identified here in a small number of cows in one herd should be investigated in larger studies.


Assuntos
Doenças dos Bovinos/imunologia , Cetose/veterinária , Lactação , Ácido 3-Hidroxibutírico/sangue , Animais , Bilirrubina/sangue , Bovinos , Ácidos Graxos não Esterificados/sangue , Feminino , Glucose/metabolismo , Nível de Saúde , Inflamação/veterinária , Mediadores da Inflamação/sangue , Cetose/imunologia , Lipídeos , Leite , Período Pós-Parto , Estudos Retrospectivos
10.
Physiol Genomics ; 51(8): 400-409, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31298615

RESUMO

Inadequate dry matter intake only partially accounts for the decrease in milk protein synthesis during heat stress (HS) in dairy cows. Our hypothesis is that reduced milk protein synthesis during HS in dairy cows is also caused by biological changes within the mammary gland. The objective of this study was to assess the hypothesis via RNA-Seq analysis of mammary tissue. Herein, four dairy cows were used in a crossover design where HS was induced for 9 days in environmental chambers. There was a 30-day washout between periods. Mammary tissue was collected via biopsy at the end of each environmental period (HS or pair-fed and thermal neutral) for transcriptomic analysis. RNA-Seq analysis revealed HS affected >2,777 genes (false discovery rate-adjusted P value < 0.05) in mammary tissue. Expression of main milk protein-encoding genes and several key genes related to regulation of protein synthesis and amino acid and glucose transport were downregulated by HS. Bioinformatics analysis revealed an overall decrease of mammary tissue metabolic activity by HS (especially carbohydrate and lipid metabolism) and an increase in immune activation and inflammation. Network analysis revealed a major role of TNF, IFNG, S100A8, S100A9, and IGF-1 in inducing/controlling the inflammatory response, with a central role of NF-κB in the process of immunoactivation. The same analysis indicated an overall inhibition of PPARγ. Collectively, these data suggest HS directly controls milk protein synthesis via reducing the transcription of metabolic-related genes and increasing inflammation-related genes.


Assuntos
Resposta ao Choque Térmico/fisiologia , Glândulas Mamárias Animais/metabolismo , Proteínas do Leite/biossíntese , Transcriptoma , Animais , Metabolismo dos Carboidratos/genética , Bovinos , Estudos Cross-Over , Feminino , Inflamação/genética , Metabolismo dos Lipídeos/genética , Glândulas Mamárias Animais/imunologia , NF-kappa B/genética , PPAR gama/genética , RNA-Seq
11.
J Dairy Sci ; 102(4): 3544-3555, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30738675

RESUMO

In bovine mammary tissue and cells, liver X receptor (LXR) regulates lipid synthesis mainly via transactivation of the transcription factor sterol regulatory element binding protein 1 (SREBP1). In the present work, we investigated the role of LXR in controlling lipid synthesis via transactivation of SREBP1 in goat primary mammary cells (GMEC). The GMEC were treated with a synthetic agonist of LXR, T0901317, and transactivation and transcription of SREBP1, expression of lipogenic genes, and fatty acid profiling and triacylglycerol (TAG) content of the cells were measured. A mild increase in the mRNA expression level of LXRα (NR1H3) was observed following treatment with different concentrations of T0901317, and a dose-dependent increase in mRNA and transactivation of SREBP1 was detected. Activation of LXR resulted in a significant increase in the mRNA expression of most of the measured genes related to de novo synthesis, desaturation, and transport of fatty acids; TAG synthesis; and transcription regulators. Compared with the control, total content of cellular TAG increased by more than 20% with T0901317 treatment. Furthermore, addition of T0901317 increased the proportion of unsaturated fatty acids (e.g., C16:1, C18:1, C20:1, and C22:1), and decreased the proportion of saturated fatty acids (e.g., C16:0, C18:0, C20:0, and C22:0). These results provide evidence that LXR regulates the expression and activity of SREBP1. Our results indicated that LXR participate in regulating the transcription of genes involved in milk fat synthesis in GMEC in an SREBP1-dependent fashion.


Assuntos
Células Epiteliais/metabolismo , Ácidos Graxos/biossíntese , Cabras/metabolismo , Receptores X do Fígado/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Adipogenia , Animais , Contagem de Células , Células Epiteliais/efeitos dos fármacos , Ácidos Graxos Insaturados/metabolismo , Feminino , Regulação da Expressão Gênica , Cabras/genética , Hidrocarbonetos Fluorados/farmacologia , Lipogênese , Sulfonamidas/farmacologia , Triglicerídeos/metabolismo
12.
Placenta ; 44: 19-22, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27452434

RESUMO

RT-qPCR requires a suitable set of internal control genes (ICGs) for an accurate normalization. The usefulness of 7 previously published ICGs in the human placenta was analyzed according to the effects of betamethasone treatment, sex and fetal age. Raw RT-qPCR data of the ICGs were evaluated using published algorithms. The algorithms revealed that a reliable normalization was achieved using the geometrical mean of PPIA, RPL19, HMBS and SDHA. The use of a different subset ICGs out of the 7 investigated, although not statistically affected by the conditions, biased the results, as demonstrated through changes in expression of glucocorticoid receptor (NR3C1) mRNA as a target gene.


Assuntos
Genes Essenciais/genética , Glucocorticoides/farmacologia , Placenta/efeitos dos fármacos , Receptores de Glucocorticoides/genética , Complexo II de Transporte de Elétrons/genética , Feminino , Perfilação da Expressão Gênica , Glucocorticoides/uso terapêutico , Humanos , Hidroximetilbilano Sintase/genética , Peptidilprolil Isomerase/genética , Placenta/metabolismo , Gravidez , Proteínas Ribossômicas/genética
13.
PLoS One ; 11(6): e0157480, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336699

RESUMO

Our objective was to identify the biological response and the cross-talk between liver and mammary tissue after intramammary infection (IMI) with Escherichia coli (E. coli) using RNAseq technology. Sixteen cows were inoculated with live E. coli into one mammary quarter at ~4-6 weeks in lactation. For all cows, biopsies were performed at -144, 12 and 24 h relative to IMI in liver and at 24 h post-IMI in infected and non-infected (control) mammary quarters. For a subset of cows (n = 6), RNA was extracted from both liver and mammary tissue and sequenced using a 100 bp paired-end approach. Ingenuity Pathway Analysis and the Dynamic Impact Approach analysis of differentially expressed genes (overall effect False Discovery Rate≤0.05) indicated that IMI induced an overall activation of inflammation at 12 h post-IMI and a strong inhibition of metabolism, especially related to lipid, glucose, and xenobiotics at 24 h post-IMI in liver. The data indicated in mammary tissue an overall induction of inflammatory response with little effect on metabolism at 24 h post-IMI. We identified a large number of up-stream regulators potentially involved in the response to IMI in both tissues but a relatively small core network of transcription factors controlling the response to IMI for liver whereas a large network in mammary tissue. Transcriptomic results in liver and mammary tissue were supported by changes in inflammatory and metabolic mediators in blood and milk. The analysis of potential cross-talk between the two tissues during IMI uncovered a large communication from the mammary tissue to the liver to coordinate the inflammatory response but a relatively small communication from the liver to the mammary tissue. Our results indicate a strong induction of the inflammatory response in mammary tissue and impairment of liver metabolism 24h post-IMI partly driven by the signaling from infected mammary tissue.


Assuntos
Infecções por Escherichia coli/veterinária , Escherichia coli , Lactação , Fígado/metabolismo , Glândulas Mamárias Animais/metabolismo , Mastite Bovina/genética , Mastite Bovina/microbiologia , Transcriptoma , Adaptação Biológica , Animais , Biomarcadores , Bovinos , Análise por Conglomerados , Biologia Computacional/métodos , Metabolismo Energético , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/metabolismo , Redes e Vias Metabólicas , Leite/metabolismo , Transdução de Sinais
14.
J Dairy Sci ; 99(1): 783-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26601584

RESUMO

Sterol regulatory element binding protein 1 (SREBP1; gene name SREBF1) is known to be the master regulator of lipid homeostasis in mammals, including milk fat synthesis. The major role of SREBP1 in controlling milk fat synthesis has been demonstrated in bovine mammary epithelial cells. Except for a demonstrated role in controlling the expression of FASN, a regulatory role of SREBP1 on milk fat synthesis is very likely, but has not yet been demonstrated in goat mammary epithelial cells (GMEC). To explore the regulatory function of SREBP1 on de novo fatty acids and triacylglycerol synthesis in GMEC, we overexpressed the mature form of SREBP1 (active NH2-terminal fragment) in GMEC using a recombinant adenovirus vector (Ad-nSREBP1), with Ad-GFP (recombinant adenovirus of green fluorescent protein) as control, and infected the GMEC for 48 h. In infected cells, we assessed the expression of 20 genes related to milk fat synthesis using real time-quantitative PCR, the protein abundance of SREBP1 and FASN by Western blot, the production of triacylglycerol, and the fatty acid profile. Expression of SREBF1 was modest in mammary compared with the other tissues in dairy goats but its expression increased approximately 30-fold from pregnancy to lactation. The overexpression of the mature form of SREBP1 was confirmed by >200-fold higher expression of SREBF1 in Ad-nSREBP1 compared with Ad-GFP. We observed no changes in amount of the precursor form of SREBP1 protein but a >10-fold increase of the mature form of SREBP1 protein with Ad-nSREBP1. Compared with Ad-GFP cells (control), Ad-nSREBP1 cells had a significant increase in expression of genes related to long-chain fatty acid activation (ACSL1), transport (FABP3), desaturation (SCD1), de novo synthesis of fatty acids (ACSS2, ACLY, IDH1, ACACA, FASN, and ELOVL6), and transcriptional factors (NR1H3 and PPARG). We observed a >10-fold increase in expression of INSIG1 but SCAP was downregulated by Ad-nSREBP1. Among genes related to milk fat synthesis and lipid droplet formation, only LPIN1 and DGAT1 were upregulated by Ad-nSREBP1. Compared with the Ad-GFP, the cellular triacylglycerol content was higher and the percentage of C16:0 and C18:1 increased, whereas that of C16:1, C18:0, and C18:2 decreased in Ad-nSREBP1 cells. Overall, the data provide strong support for a central role of SREBP1 in the regulation of milk fat synthesis in goat mammary cells.


Assuntos
Células Epiteliais/metabolismo , Ácidos Graxos/biossíntese , Regulação da Expressão Gênica , Glândulas Mamárias Animais/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Triglicerídeos/metabolismo , Adipogenia , Animais , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Feminino , Cabras , Células HEK293 , Humanos , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
15.
J Anim Sci ; 93(12): 5531-53, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26641164

RESUMO

Nutrigenomics in dairy cows is a relatively new area of research. It is defined as the study of the genomewide influences of nutrition altering the expression of genes. Dietary compounds affect gene expression directly or indirectly via interactions with transcription factors. Among those, the most relevant for nutrigenomics are ligand-dependent nuclear receptors, especially peroxisome proliferator-activated receptors (PPAR) and liver X receptor. Among other transcription factors, a prominent nutrigenomic role is played by the sterol regulatory element-binding protein 1 (SREBP1). Data from studies on dairy cows using gene expression and gene reporters among the main molecular methods used to study nutrigenomics in dairy cows are indicative of a network of multiple transcription factors at play in controlling the nutrigenomic responses. Fatty acids, AA, and level of feed and energy intake have the strongest nutrigenomic potential. The effect of 10,12 CLA on depressing milk fat synthesis via inhibition of SREBP1 was among the first and likely the best-known nutrigenomic example in dairy cows. Although long-chain fatty acids (LCFA) are clearly the most potent, a nutrigenomic role for short-chain fatty acids is emerging. Available data indicate that saturated compared with unsaturated LCFA have a more potent nutrigenomic effect in vitro, likely through PPAR. In vivo, the effect of saturated LCFA is more modest, with contrasting effects among tissues. Nutrigenomic effects of AA are emerging, particularly for the regulation of milk protein synthesis-associated genes. The level of energy in the diet has a strong and broad nutrigenomic effect and appears to "prime" tissue metabolism, particularly liver. We are at the frontier of the nutrigenomics era in ruminants and initial data strongly indicate that this scientific branch (and spinoffs such as nutriepigenomics) can play a critical role in future strategies to better feed dairy cattle.


Assuntos
Bovinos/fisiologia , Lactação/fisiologia , Nutrigenômica/métodos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bovinos/genética , Dieta/veterinária , Gorduras na Dieta/metabolismo , Suplementos Nutricionais , Ácidos Graxos/metabolismo , Feminino , Regulação da Expressão Gênica/fisiologia , Lactação/genética , Leite/química , Receptores Ativados por Proliferador de Peroxissomo/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
16.
J Anim Sci ; 93(12): 5554-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26641165

RESUMO

The advent of high-throughput technologies to study an animal's genome, proteome, and metabolome (i.e., "omics" tools) constituted a setback to the use of reductionism in livestock research. More recent development of "next-generation sequencing" tools was instrumental in allowing in-depth studies of the microbiome in the rumen and other sections of the gastrointestinal tract. Omics, along with bioinformatics, constitutes the foundation of modern systems biology, a field of study widely used in model organisms (e.g., rodents, yeast, humans) to enhance understanding of the complex biological interactions occurring within cells and tissues at the gene, protein, and metabolite level. Application of systems biology concepts is ideal for the study of interactions between nutrition and physiological state with tissue and cell metabolism and function during key life stages of livestock species, including the transition from pregnancy to lactation, in utero development, or postnatal growth. Modern bioinformatic tools capable of discerning functional outcomes and biologically meaningful networks complement the ever-increasing ability to generate large molecular, microbial, and metabolite data sets. Simultaneous visualization of the complex intertissue adaptations to physiological state and nutrition can now be discerned. Studies to understand the linkages between the microbiome and the absorptive epithelium using the integrative approach are emerging. We present examples of new knowledge generated through the application of functional analyses of transcriptomic, proteomic, and metabolomic data sets encompassing nutritional management of dairy cows, pigs, and poultry. Published work to date underscores that the integrative approach across and within tissues may prove useful for fine-tuning nutritional management of livestock. An important goal during this process is to uncover key molecular players involved in the organismal adaptations to nutrition.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Biologia Computacional , Gado , Animais , Trato Gastrointestinal/fisiologia , Nutrigenômica
17.
Physiol Genomics ; 45(23): 1157-67, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24104205

RESUMO

The objective of this study was to investigate if a reduced milking frequency altered the effect of dietary energy restriction on the hepatic transcriptome of grazing dairy cows during early lactation. Multiparous Holstein-Friesian and Holstein-Friesian × Jersey cows (n = 120) were milked twice daily (2×) from calving until 34 ± 6 days in milk (mean ± SD). Cows were then allocated to one of four treatments in a 2 × 2 factorial arrangement. Treatments consisted of two milking frequencies [2× or once daily (1×)] and two feeding levels for 3 wk: adequately fed (AF) or underfed (UF, 60% of AF). Liver tissue was biopsied from 12 cows per treatment after 3 wk of treatment, and the hepatic transcriptome was profiled with an Agilent 4 × 44k bovine microarray. Over 2,900 genes were differentially expressed in response to the energy restriction; however, no effects resulted from changes to milking frequency. This may indicate that after 3 wk of 1× milking, any changes to the liver transcriptome that may have occurred earlier have returned to normal. After 3 wk of energy restriction, gene expression patterns indicate that glucose-sparing pathways were activated, and gluconeogenesis was increased in UF cows. Genes involved in hepatic stress were upregulated in response to the energy restriction indicative of the pressure energy restriction places on liver function. Other pathways upregulated included "cytoskeletal remodeling," indicating that a 3 wk energy restriction resulted in molecular changes to assist tissue remodeling. Overall, 1× milking does not modify the hepatic transcriptome changes that occur in response to an energy restriction.


Assuntos
Restrição Calórica/veterinária , Indústria de Laticínios/métodos , Lactação/fisiologia , Fígado/metabolismo , Leite/fisiologia , Transcriptoma/fisiologia , Animais , Bovinos , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Análise em Microsséries/veterinária , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária
18.
J Dairy Sci ; 96(4): 2201-2213, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23462174

RESUMO

Abomasal carnitine infusion during acute feed restriction increases hepatic fatty acid oxidation and decreases liver lipid in dairy cows. Eight mid-lactation Holstein cows were used in a replicated 4×4 Latin square design with 14-d periods. A 2×2 factorial arrangement was used to determine the effects of water infusion+ad libitum dry matter intake (DMI), water infusion+restricted DMI (50% of previous 5-d average), l-carnitine infusion (20 g/d)+ad libitum DMI, or l-carnitine infusion+restricted DMI. Liver RNA from 7 healthy cows was used for transcriptome profiling using a bovine microarray. An ANOVA with a false discovery rate was used to identify treatment and interaction effects. A substantial transcriptome change was observed only with DMI restriction, resulting in 312 (155 downregulated, 157 upregulated) differentially expressed genes. Quantitative PCR was performed to verify microarray data and measure expression of additional genes not present on the microarray. The quantitative PCR data confirmed the effect of feed restriction but not of l-carnitine treatment. Feed restriction increased expression of GPX3 and of genes associated with gluconeogenesis (PC, PDK4), inflammation (SAA3), and signaling (ADIPOR2). In contrast, feed restriction downregulated BBOX, a key for l-carnitine biosynthesis, and the transcription factor HNF4A. The bioinformatics functional analysis of genes affected by DMI restriction uncovered biosynthesis of cholesterol and energy generation by mitochondrial respiration as the most relevant and inhibited functions. The data also indicated an increase of flux toward gluconeogenesis. We interpreted those results as a likely response of the liver to spare energy and provide glucose for the lactating mammary gland during feed deprivation.


Assuntos
Carnitina/administração & dosagem , Privação de Alimentos/fisiologia , Fígado/química , Fosforilação Oxidativa , Esteróis/biossíntese , Transcriptoma/genética , Animais , Bovinos , Metabolismo Energético , Feminino , Gluconeogênese/genética , Gluconeogênese/fisiologia , Lactação/fisiologia , Metabolismo dos Lipídeos/genética , Análise em Microsséries/veterinária , Mitocôndrias Hepáticas/metabolismo
19.
J Dairy Sci ; 95(4): 1749-58, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22459823

RESUMO

Cows experience some degree of negative energy balance and immunosuppression around parturition, making them vulnerable to metabolic and infectious diseases. The effect of prepartum feeding of diets to meet (control, 1.34 Mcal/kg of dry matter) or exceed (overfed, 1.62 Mcal/kg of dry matter) dietary energy requirements was evaluated during the entire dry period (∼45 d) on blood polymorphonuclear neutrophil function, blood metabolic and inflammatory indices, and milk production in Holstein cows. By design, dry matter intake in the overfed group (n=9) exceeded energy requirements during the prepartum period (-4 to -1 wk relative to parturition), resulting in greater energy balance when compared with the control group (n=10). Overfed cows were in more negative energy balance during wk 1 after calving than controls. No differences were observed in dry matter intake, milk yield, and milk composition between diets. Although nonesterified fatty acid concentration pre- (0.138 mEq/L) and postpartum (0.421 mEq/L) was not different between diets, blood insulin concentration was greater in overfed cows prepartum (16.7 µIU/mL) compared with controls pre- and postpartum (∼3.25 µIU/mL). Among metabolic indicators, concentrations of urea (4.63 vs. 6.38 mmol/L), creatinine (100 vs. 118 µmol/L), and triacylglycerol (4.0 vs. 8.57 mg/dL) in overfed cows were lower prepartum than controls. Glucose was greater pre- (4.24 vs. 4.00 mmol/L) and postpartum (3.49 vs. 3.30 mmol/L) compared with control cows. Among liver function indicators, the concentration of bilirubin increased by 2 to 6 fold postpartum in control and overfed cows. Phagocytosis capacity of polymorphonuclear neutrophils was lower prepartum in overfed cows (32.7% vs. 46.5%); phagocytosis in the control group remained constant postpartum (50%) but it increased at d 7 in the overfed group to levels similar to controls (48.4%). Regardless of prepartum diet, parturition was characterized by an increase in nonesterified fatty acid and liver triacylglycerol, as well as blood indices of inflammation (ceruloplasmin and haptoglobin), oxidative stress (reactive oxygen metabolites), and liver injury (glutamic oxaloacetic transaminase). Concentrations of the antioxidant and anti-inflammatory compounds vitamin A, vitamin E, and ß-carotene decreased after calving. For vitamin A, the decrease was observed in overfed cows (47.3 vs. 27.5 µg/100 mL). Overall, overfeeding energy and higher energy status prepartum led to the surge of insulin and had a transient effect on metabolism postpartum.


Assuntos
Bovinos/sangue , Bovinos/imunologia , Dieta/veterinária , Neutrófilos/imunologia , Período Periparto/imunologia , Período Periparto/fisiologia , Animais , Bilirrubina/sangue , Bovinos/metabolismo , Ingestão de Energia , Metabolismo Energético , Ácidos Graxos não Esterificados/sangue , Feminino , Tolerância Imunológica , Inflamação , Insulina , Fagocitose
20.
Theriogenology ; 75(8): 1381-99, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21354606

RESUMO

Bone is a plastic tissue with a large healing capability. However, extensive bone loss due to disease or trauma requires tissue-engineering applications. Presently, bone grafting is the gold standard for bone repair, but presents serious limitations including donor site morbidity, rejection, and limited tissue regeneration. The use of stem cells appears to be a means to overcome such limitations. Bone marrow mesenchymal stem cells (BMSC) have been the choice, thus far, for stem cell therapy for bone regeneration. However, it has been shown that adipose-derived stem cells (ASC) have similar immunophenotype, morphology, multilineage potential, and transcriptome compared to BMSC. Moreover, ASC are much more abundant, more accessible and have lower donor morbidity, which combined may make ASC a better alternative to BMSC. ASC are also able to migrate to the site of injury and have immunosuppressive abilities similar to BMSC. Further, ASC have demonstrated extensive osteogenic capacity both in vitro and in vivo in several species, greatly enhancing the healing of critical size defects. The use of scaffolds in combination with ASC and growth factors provides a valuable tool for guided bone regeneration, especially for complex anatomic defects. Some critical elements include ASC-scaffold interactions and appropriate three-dimensional design of the porous osteoinductive structures. This review examines data that provides strong support for the clinical translation of ASC for bone regeneration.


Assuntos
Tecido Adiposo/citologia , Regeneração Óssea/fisiologia , Transplante Ósseo/métodos , Células-Tronco Mesenquimais/fisiologia , Suínos/fisiologia , Engenharia Tecidual/métodos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA