Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell Tissue Res ; 393(3): 577-593, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37335379

RESUMO

The androgen pathway via androgen receptor (AR) has received the most attention for development of male reproductive tracts. The estrogen pathway through estrogen receptor (ESR1) is also a major contributor to rete testis and efferent duct formation, but the role of progesterone via progesterone receptor (PGR) has largely been overlooked. Expression patterns of these receptors in the mesonephric tubules (MTs) and Wolffian duct (WD), which differentiate into the efferent ductules and epididymis, respectively, remain unclear because of the difficulty in distinguishing each region of the tracts. This study investigated AR, ESR1, and PGR expressions in the murine mesonephros using three-dimensional (3-D) reconstruction. The receptors were localized in serial paraffin sections of the mouse testis and mesonephros by immunohistochemistry on embryonic days (E) 12.5, 15.5, and 18.5. Specific regions of the developing MTs and WD were determined by 3-D reconstruction using Amira software. AR was found first in the specific portion of the MTs near the MT-rete junction at E12.5, and the epithelial expression showed increasing strength from cranial to the caudal regions. Epithelial expression of ESR1 was found in the cranial WD and MTs near the WD first at E15.5. PGR was weakly positive only in the MTs and cranial WD starting on E15.5. This 3-D analysis suggests that gonadal androgen acts first on the MTs near the MT-rete junction but that estrogen is the first to influence MTs near the WD, while potential PGR activity is delayed and limited to the epithelium.


Assuntos
Androgênios , Mesonefro , Masculino , Animais , Camundongos , Epididimo , Receptores de Estrogênio , Receptores Androgênicos , Hormônios Esteroides Gonadais , Estrogênios
2.
Andrology ; 10(2): 367-376, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34542939

RESUMO

BACKGROUND: Polyphenylene carboxymethylene (PPCM) sodium salt is a promising multipurpose technology for prevention of both sexually transmitted infections (STIs) and pregnancy. In preclinical studies, PPCM has demonstrated significant (1) antimicrobial activity against several important viral and bacterial pathogens and (2) contraceptive activity associated with premature acrosome loss. OBJECTIVE: To further evaluate a vaginal antimicrobial compound as a contraceptive agent in preclinical studies utilizing a repurposed hyaluronan binding assay (HBA). MATERIALS AND METHODS: Semen samples containing either neat semen or washed spermatozoa were treated with increasing concentrations of PPCM or calcium ionophore A23187 (positive control). Sperm inactivation was measured by two methods: (1) double acrosome staining (AS), and (2) a hyaluronan binding assay (HBA® ). Percentage of inactivated sperm was compared between untreated control sperm and those treated with PPCM or A23187. RESULTS: PPCM had a significant (p < 0.05) and dose-dependent effect on sperm inactivation in both assays, with HBA detecting a higher proportion of inactivated sperm than AS. PPCM did not affect sperm motility and exhibited equivalent responses in the neat and washed samples. DISCUSSION: Both HBA and AS confirmed that spermatozoa were rapidly inactivated at PPCM concentrations likely present in the vagina under actual use conditions and in a time-frame comparable to in vivo migration of spermatozoa out of seminal plasma into cervical mucus. CONCLUSION: PPCM vaginal gel may provide contraceptive protection as well as help with STI prevention. HBA may be a sensitive and much needed biomarker for sperm activity in future contraceptive development.


Assuntos
Acrossomo/efeitos dos fármacos , Anticoncepcionais/farmacologia , Polímeros/farmacologia , Espermatozoides/efeitos dos fármacos , Cremes, Espumas e Géis Vaginais/farmacologia , Calcimicina/farmacologia , Feminino , Humanos , Ácido Hialurônico , Masculino , Gravidez , Sêmen/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos
3.
Am J Clin Exp Urol ; 10(6): 377-389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36636689

RESUMO

Cancer stem cells (CSCs) are resistant to conventional cancer therapies, permitting the repopulation of new tumor growth and driving disease progression. Models for testing prostate CSC-propagated tumor growth are presently limited yet necessary for therapeutic advancement. Utilizing the congenic nontumorigenic NRP152 and tumorigenic NRP154 rat prostate epithelial cell lines, the present study investigated the self-renewal, differentiation, and regenerative abilities of prostate stem/progenitor cells and developed a CSC-based PCa model. NRP154 cells expressed reduced levels of tumor suppressor caveolin-1 and increased p-Src as compared to NRP152 cells. Gene knockdown of caveolin-1 in NRP152 cells upregulated p-Src, implicating their role as potential oncogenic mediators in NRP154 cells. A FACS-based Hoechst exclusion assay revealed a side population of stem-like cells (0.1%) in both NRP152 and NRP154 cell lines. Using a 3D Matrigel culture system, stem cells from both cell lines established prostaspheres at a 0.1% efficiency through asymmetric self-renewal and rapid proliferation of daughter progenitor cells. Spheres derived from both cell lines contained CD117+ and CD133+ stem cell subpopulations and basal progenitor cell subpopulations (p63+ and CK5+) but were negative for luminal cell CK8 markers at day 7. While some NRP152 sphere cells were androgen receptor (AR) positive at this timepoint, NRP154 cells were AR- up to 30 days of 3D culture. The regenerative capacity of the stem/progenitor cells was demonstrated by in vivo tissue recombination with urogenital sinus mesenchyme (UGM) and renal grafting in nude mice. While stem/progenitor cells from NRP152 spheroids generated normal prostate structures, CSCs and progeny cells from NRP154 tumoroids generated tumor tissues that were characterized by immunohistochemistry. Atypical hyperplasia and prostatic intraepithelial neoplasia (PIN) lesions progressed to adenocarcinoma with kidney invasion over 4 months. This provides clear evidence that prostate CSCs can repopulate new tumor growth outside the prostate gland that rapidly progresses to poorly differentiated adenocarcinoma with invasive capabilities. The dual in vitro/in vivo CSC model system presented herein provides a novel platform for screening therapeutic agents that target prostate CSCs for effective combined treatment protocols for local and advanced disease stages.

4.
Biomolecules ; 11(12)2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34944473

RESUMO

The molecular mechanisms underlying prostate development can provide clues for prostate cancer research. It has been demonstrated that MEK/ERK signaling downstream of androgen-targeted FGF10 signaling directly induces prostatic branching during development, while Rho/Rho-kinase can regulate prostate cell proliferation. MEK/ERK and Rho/Rho kinase regulate myosin light chain kinase (MLCK), and MLCK regulates myosin light chain phosphorylation (MLC-P), which is critical for cell fate, including cell proliferation, differentiation, and apoptosis. However, the roles and crosstalk of the MEK/ERK and Rho/Rho kinase signaling pathways in prostatic morphogenesis have not been examined. In the present study, we used numerical and image analysis to characterize lobe-specific rat prostatic branching during postnatal organ culture and investigated the roles of FGF10-MEK/ERK and Rho/Rho kinase signaling pathways in prostatic morphogenesis. Prostates exhibited distinctive lobe-specific growth and branching patterns in the ventral (VP) and lateral (LP) lobes, while exogenous FGF10 treatment shifted LP branching towards a VP branching pattern. Treatment with inhibitors of MEK1/2, Rho, Rho kinase, or MLCK significantly inhibited VP growth and blocked branching morphogenesis, further supporting critical roles for MEK/ERK and Rho/Rho kinase signaling pathways in prostatic growth and branching during development. We propose that MLCK-regulated MLC-P may be a central downstream target of both signaling pathways in regulating prostate morphogenesis.


Assuntos
Fator 10 de Crescimento de Fibroblastos/metabolismo , Próstata/crescimento & desenvolvimento , Quinases Associadas a rho/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Sinalização das MAP Quinases , Masculino , Morfogênese , Técnicas de Cultura de Órgãos , Próstata/metabolismo , Ratos
5.
J Vis Exp ; (154)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31885380

RESUMO

Despite advances in adult stem cell research, identification and isolation of stem cells from tissue specimens remains a major challenge. While resident stem cells are relatively quiescent with niche restraints in adult tissues, they enter the cell cycle in anchor-free three-dimensional (3D) culture and undergo both symmetric and asymmetric cell division, giving rise to both stem and progenitor cells. The latter proliferate rapidly and are the major cell population at various stages of lineage commitment, forming heterogeneous spheroids. Using primary normal human prostate epithelial cells (HPrEC), a spheroid-based, label-retention assay was developed that permits the identification and functional isolation of the spheroid-initiating stem cells at a single cell resolution. HPrEC or cell lines are two-dimensionally (2D) cultured with BrdU for 10 days to permit its incorporation into the DNA of all dividing cells, including self-renewing stem cells. Wash out commences upon transfer to the 3D culture for 5 days, during which stem cells self-renew through asymmetric division and initiate spheroid formation. While relatively quiescent daughter stem cells retain BrdU-labeled parental DNA, the daughter progenitors rapidly proliferate, losing the BrdU label. BrdU can be substituted with CFSE or Far Red pro-dyes, which permit live stem cell isolation by FACS. Stem cell characteristics are confirmed by in vitro spheroid formation, in vivo tissue regeneration assays, and by documenting their symmetric/asymmetric cell divisions. The isolated label-retaining stem cells can be rigorously interrogated by downstream molecular and biologic studies, including RNA-seq, ChIP-seq, single cell capture, metabolic activity, proteome profiling, immunocytochemistry, organoid formation, and in vivo tissue regeneration. Importantly, this marker-free functional stem cell isolation approach identifies stem-like cells from fresh cancer specimens and cancer cell lines from multiple organs, suggesting wide applicability. It can be used to identify cancer stem-like cell biomarkers, screen pharmaceuticals targeting cancer stem-like cells, and discover novel therapeutic targets in cancers.


Assuntos
Separação Celular/métodos , Esferoides Celulares , Células-Tronco/citologia , Bromodesoxiuridina , Contagem de Células , Ciclo Celular/fisiologia , Divisão Celular , Células Cultivadas , Citometria de Fluxo , Humanos , Masculino , Próstata/citologia
6.
Proc Natl Acad Sci U S A ; 103(21): 8179-84, 2006 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-16690748

RESUMO

Considerable animal and human data have indicated that selenium is effective in reducing the incidence of several different types of cancer, including that of the prostate. However, the mechanism by which selenium inhibits carcinogenesis remains unknown. One possibility is that dietary selenium influences the levels of selenium-containing proteins, or selenoproteins. Selenoproteins contain selenium in the form of selenocysteine and perform a variety of cellular functions, including antioxidant defense. To determine whether the levels of selenoproteins can influence carcinogenesis independent of selenium intake, a unique mouse model was developed by breeding two transgenic animals: mice with reduced selenoprotein levels because of the expression of an altered selenocysteine-tRNA (i6A-) and mice that develop prostate cancer because of the targeted expression of the SV40 large T and small t oncogenes to that organ [C3(1)/Tag]. The resulting bigenic animals (i6A-/Tag) and control WT/Tag mice were assessed for the presence, degree, and progression of prostatic epithelial hyperplasia and nuclear atypia. The selenoprotein-deficient mice exhibited accelerated development of lesions associated with prostate cancer progression, implicating selenoproteins in cancer risk and development and raising the possibility that selenium prevents cancer by modulating the levels of these selenoproteins.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Selenoproteínas/deficiência , Animais , Modelos Animais de Doenças , Glutationa Peroxidase/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Próstata/metabolismo , Selenoproteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA