Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 123(6): 066402, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31491189

RESUMO

The momentum dependence of the nematic order parameter is an important ingredient in the microscopic description of iron-based high-temperature superconductors. While recent reports on FeSe indicate that the nematic order parameter changes sign between electron and hole bands, detailed knowledge is still missing for other compounds. Combining angle-resolved photoemission spectroscopy with uniaxial strain tuning, we measure the nematic band splitting in both FeSe and BaFe_{2}As_{2} without interference from either twinning or magnetic order. We find that the nematic order parameter exhibits the same momentum dependence in both compounds with a sign change between the Brillouin center and the corner. This suggests that the same microscopic mechanism drives the nematic order in spite of the very different phase diagrams.

2.
Phys Rev Lett ; 121(12): 127001, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296157

RESUMO

We report an angle-resolved photoemission spectroscopy study of the iron-based superconductor family, Ba_{1-x}Na_{x}Fe_{2}As_{2}. This system harbors the recently discovered double-Q magnetic order appearing in a reentrant C_{4} phase deep within the underdoped regime of the phase diagram that is otherwise dominated by the coupled nematic phase and collinear antiferromagnetic order. From a detailed temperature-dependence study, we identify the electronic response to the nematic phase in an orbital-dependent band shift that strictly follows the rotational symmetry of the lattice and disappears when the system restores C_{4} symmetry in the low temperature phase. In addition, we report the observation of a distinct electronic reconstruction that cannot be explained by the known electronic orders in the system.

3.
Nat Commun ; 9(1): 2978, 2018 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061634

RESUMO

Incommensurate charge order (CO) has been identified as the leading competitor of high-temperature superconductivity in all major families of layered copper oxides, but the perplexing variety of CO states in different cuprates has confounded investigations of its impact on the transport and thermodynamic properties. The three-dimensional (3D) CO observed in YBa2Cu3O6+x in high magnetic fields is of particular interest, because quantum transport measurements have revealed detailed information about the corresponding Fermi surface. Here we use resonant X-ray scattering to demonstrate 3D-CO in underdoped YBa2Cu3O6+x films grown epitaxially on SrTiO3 in the absence of magnetic fields. The resonance profiles indicate that Cu sites in the charge-reservoir layers participate in the CO state, and thus efficiently transmit CO correlations between adjacent CuO2 bilayer units. The results offer fresh perspectives for experiments elucidating the influence of 3D-CO on the electronic properties of cuprates without the need to apply high magnetic fields.

4.
Nat Commun ; 8(1): 961, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038538

RESUMO

Magnetic honeycomb iridates are thought to show strongly spin-anisotropic exchange interactions which, when highly frustrated, lead to an exotic state of matter known as the Kitaev quantum spin liquid. However, in all known examples these materials magnetically order at finite temperatures, the scale of which may imply weak frustration. Here we show that the application of a relatively small magnetic field drives the three-dimensional magnet ß-Li2IrO3 from its incommensurate ground state into a quantum correlated paramagnet. Interestingly, this paramagnetic state admixes a zig-zag spin mode analogous to the zig-zag order seen in other Mott-Kitaev compounds. The rapid onset of the field-induced correlated state implies the exchange interactions are delicately balanced, leading to strong frustration and a near degeneracy of different ground states.Materials with a Kitaev spin liquid ground state are sought after as models of quantum phases but candidates so far form either zig-zag or incommensurate magnetic order. Ruiz et al. find a crossover between these states in ß-Li2IrO3 under weak magnetic fields, indicating strongly frustrated spin interactions.

5.
J Phys Condens Matter ; 29(28): 285801, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28513476

RESUMO

We performed resistance measurements on [Formula: see text]Cu x Te with [Formula: see text] in the presence of in-plane applied magnetic fields, revealing a resistance anisotropy that can be induced at a temperature far below the structural and magnetic zero-field transition temperatures. The observed resistance anisotropy strongly depends on the field orientation with respect to the crystallographic axes, as well as on the field-cooling history. Our results imply a correlation between the observed features and the low-temperature magnetic order. Hysteresis in the angle-dependence indicates a strong pinning of the magnetic order within a temperature range that varies with the Cu content. The resistance anisotropy vanishes at different temperatures depending on whether an external magnetic field or a remnant field is present: the closing temperature is higher in the presence of an external field. For [Formula: see text] the resistance anisotropy closes above the structural transition, at the same temperature at which the zero-field short-range magnetic order disappears and the sample becomes paramagnetic. Thus we suggest that under an external magnetic field the resistance anisotropy mirrors the magnetic order parameter. We discuss similarities to nematic order observed in other iron pnictide materials.

6.
Phys Rev Lett ; 116(19): 197004, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27232038

RESUMO

An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

7.
J Phys Condens Matter ; 28(11): 115702, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26895292

RESUMO

We investigate the effects of post-growth annealing on the structural and magnetic properties of BaFe2As2. Magnetic susceptibility measurements, which exhibit a signal corresponding to the magnetic phase transition, and high-resolution x-ray diffraction measurements, which directly probe the structural order parameter, show that annealing causes the ordering temperatures of both the phase transitions to increase, sharpen and converge. In the as grown sample, our measurements show two distinct transitions corresponding to structural and magnetic ordering, which are separated in temperature by approximately 1 K. After 46 days (d) of annealing at 700 °C, the two become concurrent in temperature. These measurements demonstrate that the structural phase transition is second-order like when the magnetic and structural phase transitions are separated in temperature, and first-order like when the two phase transition temperatures coincide. This observation indicates that annealing causes the system to cross a hitherto undiscovered tricritical point. In addition, x-ray diffraction measurements show that the c-axis lattice parameter increases with annealing up to 30 d, but remains constant for longer annealing times. Comparisons of BaFe2As2 to SrFe2As2 are made when possible.

8.
Phys Rev Lett ; 115(25): 256403, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722933

RESUMO

We present a systematic angle-resolved photoemission spectroscopy study of the substitution dependence of the electronic structure of Rb_{0.8}Fe_{2}(Se_{1-z}S_{z})_{2} (z=0, 0.5, 1), where superconductivity is continuously suppressed into a metallic phase. Going from the nonsuperconducting Rb_{0.8}Fe_{2}S_{2} to superconducting Rb_{0.8}Fe_{2}Se_{2}, we observe little change of the Fermi surface topology, but a reduction of the overall bandwidth by a factor of 2. Hence, for these heavily electron-doped iron chalcogenides, we have identified electron correlation as explicitly manifested in the quasiparticle bandwidth to be the important tuning parameter for superconductivity, and that moderate correlation is essential to achieving high T_{C}.

9.
Phys Rev Lett ; 112(17): 177002, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24836268

RESUMO

We use neutron scattering to study the spin excitations associated with the stripe antiferromagnetic order in semiconducting K(0.85)Fe(1.54)Se(2) (T(N) = 280 K). We show that the spin-wave spectra can be accurately described by an effective Heisenberg Hamiltonian with highly anisotropic inplane couplings at T = 5 K. At high temperature (T = 300 K) above T(N), short-range magnetic correlation with anisotropic correlation lengths are observed. Our results suggest that, despite the dramatic difference in the Fermi surface topology, the inplane anisotropic magnetic couplings are a fundamental property of the iron-based compounds; this implies that their antiferromagnetism may originate from local strong correlation effects rather than weak coupling Fermi surface nesting.

10.
Phys Rev Lett ; 111(1): 017204, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23863025

RESUMO

A high-resolution neutron spectroscopic technique is used to measure momentum-resolved magnon lifetimes in the prototypical two- and three-dimensional antiferromagnets Rb(2)MnF(4) and MnF(2), over the full Brillouin zone and a wide range of temperatures. We rederived theories of the lifetime resulting from magnon-magnon scattering, thereby broadening their applicability beyond asymptotically small regions of wave vector and temperature. Corresponding computations, combined with a small contribution reflecting collisions with domain boundaries, yield excellent quantitative agreement with the data. Comprehensive understanding of magnon lifetimes in simple antiferromagnets provides a solid foundation for current research on more complex magnets.

11.
Phys Rev Lett ; 110(14): 147003, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25167027

RESUMO

Magnetic correlations in isovalently doped Ba(Fe(1-x)Ru(x))(2)As(2) (x = 0.25, T(c) = 14.5 K; x = 0.35, T(c) = 20 K) are studied by elastic and inelastic neutron scattering techniques. A relatively large superconducting spin gap accompanied by a weak resonance mode is observed in the superconducting state in both samples. In the normal state, the magnetic excitation intensity is dramatically reduced with increasing Ru doping toward the optimally doped regime. Our results favor that the weakening of the electron-electron correlations by Ru doping is responsible for the dampening of the resonance mode, as well as the suppression of the normal state antiferromagnetic correlations near the optimally doped regime in this system.

12.
Phys Rev Lett ; 108(8): 087001, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463557

RESUMO

We report neutron scattering experiments probing the influence of uniaxial strain on both the magnetic and structural order parameters in the parent iron pnictide compound, BaFe2As2. Our data show that modest strain fields along the in-plane orthorhombic b axis can affect significant changes in phase behavior simultaneous to the removal of structural twinning effects. As a result, we demonstrate in BaFe2As2 samples detwinned via uniaxial strain that the in-plane C4 symmetry is broken by both the structural lattice distortion and long-range spin ordering at temperatures far above the nominal (strain-free) phase transition temperatures. Surprising changes in the magnetic order parameter of this system under relatively small strain fields also suggest the inherent presence of magnetic domains fluctuating above the strain-free ordering temperature in this material.

13.
Phys Rev Lett ; 109(22): 227002, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23368150

RESUMO

Spin excitations are one of the top candidates for mediating electron pairing in unconventional superconductors. Their coupling to superconductivity is evident in a large number of systems, by the observation of an abrupt redistribution of magnetic spectral weight at the superconducting transition temperature, T(c), for energies comparable to the superconducting gap. Here we report inelastic neutron scattering measurements on Fe-based superconductors, Fe(1+y-x)(Ni/Cu)(x)Te(0.5)Se(0.5) that emphasize an additional signature. The overall shape of the low energy magnetic dispersion changes from two incommensurate vertical columns at T≫T(c) to a distinctly different U-shaped dispersion at low temperature. Importantly, this spectral reconstruction is apparent for temperatures up to ~3T(c). If the magnetic excitations are involved in the pairing mechanism, their surprising modification on the approach to T(c) demonstrates that strong interactions are involved.

14.
Phys Rev Lett ; 109(26): 267003, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368605

RESUMO

The recently discovered K-Fe-Se high-temperature superconductor has caused heated debate regarding the nature of its parent compound. Transport, angle-resolved photoemission spectroscopy, and STM measurements have suggested that its parent compound could be insulating, semiconducting, or even metallic [M. H. Fang, H.-D. Wang, C.-H. Dong, Z.-J. Li, C.-M. Feng, J. Chen, and H. Q. Yuan, Europhys. Lett. 94, 27009 (2011); F. Chen et al., Phys. Rev. X 1, 021020 (2011); and W. Li et al., Phys. Rev. Lett. 109, 057003 (2012)]. Because the magnetic ground states associated with these different phases have not yet been identified and the relationship between magnetism and superconductivity is not fully understood, the real parent compound of this system remains elusive. Here, we report neutron-diffraction experiments that reveal a semiconducting antiferromagnetic (AFM) phase with rhombus iron vacancy order. The magnetic order of the semiconducting phase is the same as the stripe AFM order of the iron pnictide parent compounds. Moreover, while the sqrt[5]×sqrt[5] block AFM phase coexists with superconductivity, the stripe AFM order is suppressed by it. This leads us to conjecture that the new semiconducting magnetic ordered phase is the true parent phase of this superconductor.

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 1): 031705, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22060388

RESUMO

High-resolution x-ray scattering studies of the nonpolar thermotropic liquid crystal 4-n-pentylphenylthiol-4'-n-octyloxybenzoate (8S5) in aerosil gel nanonetworks reveal that the aerosil-induced disorder significantly alters both the nematic to smectic-A and smectic-A to smectic-C phase transitions. The limiting 8S5 smectic-A correlation length follows a power-law dependence on the aerosil density in quantitative agreement with the limiting lengths measured previously in other smectic-A liquid crystal gels. The smectic-A to smectic-C liquid crystalline phase transition is altered fundamentally by the presence of the aerosil gel. The onset of the smectic-C phase remains relatively sharp but there is an extended coexistence region where smectic-A and smectic-C domains can exist.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(3 Pt 1): 031702, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18517401

RESUMO

We have studied the effects of quenched random disorder created by dispersed aerosil nanoparticle gels on the nematic to smectic- A (N- SmA ) and smectic- A to reentrant nematic ( SmA -RN) phase transitions of thermotropic liquid-crystal mixtures of hexyloxycyanobiphenyl (6OCB) and octyloxycyanobiphenyl (8OCB). These effects are probed using high-resolution synchrotron x-ray diffraction techniques. We find that the reentrant characteristics of the system are largely unchanged by the presence of the aerosil gel network. By comparing measurements of the smectic static structure amplitude for this 8OCB- 6OCB+aerosil system with those for butyloxybenzilidene-octylaniline (4O.8)+aerosil gels, we find that the short-range smectic order in the smectic- A phase is significantly weaker in the reentrant system. This result is consistent with the behavior seen in pure 8OCB-6OCB mixtures. The strength of the smectic ordering decreases progressively as the 6OCB concentration is increased. Detailed line shape analysis shows that the high- and low-temperature nematic phases (N and RN) are similar to each other.

17.
Phys Rev Lett ; 100(9): 097001, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18352743

RESUMO

Utilizing resonant inelastic x-ray scattering, we report a previously unobserved mode in the excitation spectrum of La2-xSrxCuO4 and Nd2CuO4 at 500 meV. The mode is peaked around the (pi, 0) point in reciprocal space and is observed to soften, and broaden, away from this point. Samples with x=0, 0.01, 0.05, and 0.17 were studied. The new mode is found to be rapidly suppressed with increasing Sr content and is absent at x=0.17, where it is replaced by a continuum of excitations. This mode is only observed when the incident x-ray polarization is normal to the CuO planes.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 1): 061705, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17677281

RESUMO

Using high-resolution x-ray scattering, the effect of quenched random disorder (QRD) on the second-order nematic-smectic-A (N-SmA) phase transition in butyloxybenzilidene-octylaniline (4O.8) has been studied. 4O.8 is a nonpolar liquid crystal (LC) with a monomeric smectic-A phase. The QRD is created by aerosil nanoparticles which gelate to form a three-dimensional network, confining the LC. The QRD caused by the aerosil gel generates quenched random fields acting on both the nematic and smectic-A order parameters. This results in the destruction of the quasi-long-range order of the smectic-A phase. The x-ray scattering data are modeled with a structure factor composed of two terms, one thermal and one static, corresponding to the connected and disconnected susceptibilities, respectively. Unlike previous studies, the two parts of the structure factor are decoupled by allowing different thermal and static correlation lengths. Our fitting procedure involves temperature-dependent and temperature-independent (global) variables. The amplitude and the parallel correlation length for the thermal part of the line-shape show critical-like behavior both above and below the transition temperature. Detailed analysis reveals that the thermal correlation length does not truly diverge at the phase transition. This effect is discussed on the basis of a cutoff for the divergence caused by the random fields generated by the aerosil network confining the liquid crystal. The intensity of the static term in the line-shape behaves like the order parameter squared at a conventional second-order phase transition. The effective order parameter critical exponent shows an evolution with increasing aerosil gel density ranging from the Gaussian tricritical value to the 3D- XY value. The results of a pseudocritical scaling analysis are compared to an analysis of 4O.8+aerosil heat capacity data and discussed using a phenomenological correlation between the nematic range of pure liquid crystals and the aerosil mass density, rho{s}.


Assuntos
Compostos de Anilina/química , Cristais Líquidos/química , Nanopartículas/química , Transição de Fase , Difração de Raios X
19.
Phys Rev Lett ; 98(24): 247003, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17677985

RESUMO

Magnetic excitations for energies up to approximately 100 meV are studied for overdoped La(2-x)Sr(x)CuO(4) with x=0.25 and 0.30, using time-of-flight neutron spectroscopy. Comparison of spectra integrated over the width of an antiferromagnetic Brillouin zone demonstrates that the magnetic scattering at intermediate energies, 20

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(6 Pt 1): 060702, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16906799

RESUMO

Using x-ray scattering, we have studied the nematic to smectic- phase transition of the liquid crystal butyloxybenzilidene-octylaniline confined in an aerosil network. We find that the disorder introduced by the aerosil network destroys the long-range nature of the phase transition, and that the transition becomes similar to that observed in a finite-size system, with finite low-temperature correlation lengths of the ordered moments and a power-law behavior of the order parameter with respect to the reduced temperature observable in a limited temperature range. We also show evidence for a systematic evolution of the effective order parameter critical exponent beta with increasing disorder.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA