Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731300

RESUMO

Fish models used for chemical exposure in toxicological studies are normally kept in barren tanks without any structural environmental enrichment. Here, we tested the combined effects of environmental enrichment and exposure to two mixtures of endocrine disrupting chemicals (EDCs) in zebrafish. Firstly, we assessed whether developmental exposure to an EDC mixture (MIX G1) combined with rearing the fish in an enriched environment influenced behaviour later in life. This was evaluated using locomotion tracking one month after exposure, showing a significant interaction effect between enrichment and the MIX G1 exposure on the measured locomotion parameters. After three months, we assessed behaviour using custom-made behaviour tanks, and found that enrichment influenced swimming activity. Control fish from the enriched environment were more active than control fish from the barren environment. Secondly, we exposed adult zebrafish to a separate EDC mixture (MIX G0) after rearing them in a barren or enriched environment. Behaviour and hepatic mRNA expression for thyroid-related genes were assessed. There was a significant interaction effect between exposure and enrichment on swimming activity and an effect of environment on latency to approach the group of conspecifics, where enriched fish took more time to approach the group, possibly indicating that they were less anxious. Hepatic gene expression of a thyroid-related gene (thrb) was significantly affected by EDC exposure, while enrichment had no discernible impact on the expression of the measured genes. In conclusion, environmental enrichment is important to consider when studying the effects of EDCs in fish.

2.
Science ; 375(6582): eabe8244, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175820

RESUMO

Convergent evidence associates exposure to endocrine disrupting chemicals (EDCs) with major human diseases, even at regulation-compliant concentrations. This might be because humans are exposed to EDC mixtures, whereas chemical regulation is based on a risk assessment of individual compounds. Here, we developed a mixture-centered risk assessment strategy that integrates epidemiological and experimental evidence. We identified that exposure to an EDC mixture in early pregnancy is associated with language delay in offspring. At human-relevant concentrations, this mixture disrupted hormone-regulated and disease-relevant regulatory networks in human brain organoids and in the model organisms Xenopus leavis and Danio rerio, as well as behavioral responses. Reinterrogating epidemiological data, we found that up to 54% of the children had prenatal exposures above experimentally derived levels of concern, reaching, for the upper decile compared with the lowest decile of exposure, a 3.3 times higher risk of language delay.


Assuntos
Disruptores Endócrinos/toxicidade , Transtornos do Desenvolvimento da Linguagem/epidemiologia , Transtornos do Neurodesenvolvimento/epidemiologia , Efeitos Tardios da Exposição Pré-Natal , Transcriptoma/efeitos dos fármacos , Animais , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/genética , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Pré-Escolar , Estrogênios/metabolismo , Feminino , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Locomoção/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Transtornos do Neurodesenvolvimento/genética , Organoides , Fenóis/análise , Fenóis/toxicidade , Ácidos Ftálicos/análise , Ácidos Ftálicos/toxicidade , Gravidez , Medição de Risco , Hormônios Tireóideos/metabolismo , Xenopus laevis , Peixe-Zebra
3.
Ecotoxicol Environ Saf ; 222: 112495, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34265536

RESUMO

The environment contains a multitude of man-made chemicals, some of which can act as endocrine disruptors (EDCs), while others can be immunotoxic. We evaluated thyroid disruption and immunotoxic effects in wild female perch (Perca fluviatilis) collected from two contaminated areas in Sweden; one site contaminated with per- and polyfluoroalkyl substances (PFASs) and two sites contaminated with polychlorinated biphenyls (PCBs), with one reference site included for each area. The hepatic mRNA expression of thyroid receptors α and ß, and the thyroid hormone metabolising iodothyronine deiodinases (dio1, dio2 and dio3) were measured using real-time PCR, while the levels of thyroid hormone T3 in plasma was analysed using a radioimmunoassay. In addition, lymphocytes, granulocytes, and thrombocytes were counted microscopically. Our results showed lower levels of T3 as well as lower amounts of lymphocytes and granulocytes in perch collected from the PFAS-contaminated site compared to reference sites. In addition, expressions of mRNA coding for thyroid hormone metabolising enzymes (dio2 and dio3) and thyroid receptor α (thra) were significantly different in these fish compared to their reference site. For perch collected at the two PCB-contaminated sites, there were no significant differences in T3 levels or in expression levels of the thyroid-related genes, compared to the reference fish. Fish from one of the PCB-contaminated sites had higher levels of thrombocytes compared with both the second PCB lake and their reference lake; hence PCBs are unlikely to be the cause of this effect. The current study suggests that lifelong exposure to PFASs could affect both the thyroid hormone status and immune defence of perch in the wild.


Assuntos
Fluorocarbonos , Percas , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Feminino , Humanos , Lagos , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Glândula Tireoide/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Ecotoxicol Environ Saf ; 207: 111523, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33120279

RESUMO

The textile industry, while of major importance in the world economy, is a toxic industry utilizing and emitting thousands of chemical substances into the aquatic environment. The aim of this project was to study the potentially harmful effects associated with the leaching of chemical residues from three different types of textiles: sportswear, children's bath towels, and denim using different fish models (cell lines, fish larvae and juvenile fish). A combination of in vitro and in vivo test systems was used. Numerous biomarkers, ranging from gene expression, cytotoxicity and biochemical analysis to behavior, were measured to detect effects of leached chemicals. Principle findings indicate that leachates from all three types of textiles induced cytotoxicity on fish cell lines (RTgill-W1). Leachates from sportswear and towels induced mortality in zebrafish embryos, and chemical residues from sportswear reduced locomotion responses in developing larval fish. Sportswear leachate increased Cyp1a mRNA expression and EROD activity in liver of exposed brown trout. Leachates from towels induced EROD activity and VTG in rainbow trout, and these effects were mitigated by the temperature of the extraction process. All indicators of toxicity tested showed that exposure to textile leachate can cause adverse reactions in fish. These findings suggested that chemical leaching from textiles from domestic households could pose an ecotoxicological threat to the health of the aquatic environment.


Assuntos
Oncorhynchus mykiss/fisiologia , Indústria Têxtil , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Ecotoxicologia , Expressão Gênica , Fígado/efeitos dos fármacos , Têxteis
6.
J Fish Biol ; 96(4): 986-1003, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32060920

RESUMO

The Mekong Delta is host to a large number of freshwater species, including a unique group of facultative air-breathing Anabantiforms. Of these, the striped snakehead (Channa striata), the climbing perch (Anabas testudineus), the giant gourami (Osphronemus goramy) and the snakeskin gourami (Trichogaster pectoralis) are major contributors to aquaculture production in Vietnam. The gastrointestinal responses to feeding in these four species are detailed here. Relative intestinal length was lowest in the snakehead, indicating carnivory, and 5.5-fold greater in the snakeskin, indicating herbivory; climbing perch and giant gourami were intermediate, indicating omnivory. N-waste excretion (ammonia-N + urea-N) was greatest in the carnivorous snakehead and least in the herbivorous snakeskin, whereas the opposite trend was observed for net K+ excretion. Similarly, the more carnivorous species had a greater stomach acidity than the more herbivorous species. Measurements of acid-base flux to water indicated that the greatest postprandial alkaline tide occurred in the snakehead and a potential acidic tide in the snakeskin. Additional findings of interest were high levels of both PCO2 (up to 40 mmHg) and HCO3 - (up to 33 mM) in the intestinal chyme of all four of these air-breathing species. Using in vitro gut sac preparations of the climbing perch, it was shown that the intestinal net absorption of fluid, Na+ and HCO3 - was upregulated by feeding but not net Cl- uptake, glucose uptake or K+ secretion. Upregulated net absorption of HCO3 - suggests that the high chyme (HCO3 - ) does not result from secretion by the intestinal epithelium. The possibility of ventilatory control of PCO2 to regulate postprandial acid-base balance in these air-breathing fish is discussed.


Assuntos
Comportamento Alimentar/fisiologia , Peixes/fisiologia , Trato Gastrointestinal/fisiologia , Amônia/metabolismo , Animais , Água Doce , Mucosa Intestinal/metabolismo , Íons/metabolismo , Período Pós-Prandial , Sódio/metabolismo , Ureia/metabolismo , Vietnã
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA