Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Trans Biomed Eng ; 70(10): 2991-3002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37527300

RESUMO

OBJECTIVE: The problem of reliable and widely accepted measures of pain is still open. It follows the objective of this work as pain estimation through post-surgical trauma modeling and classification, to increase the needed reliability compared to measurements only. METHODS: This article proposes (i) a recursive identification method to obtain the frequency response and parameterization using fractional-order impedance models (FOIM), and (ii) deep learning with convolutional neural networks (CNN) classification algorithms using time-frequency data and spectrograms. The skin impedance measurements were conducted on 12 patients throughout the postanesthesia care in a proof-of-concept clinical trial. Recursive least-squares system identification was performed using a genetic algorithm for initializing the parametric model. The online parameter estimates were compared to the self-reported level by the Numeric Rating Scale (NRS) for analysis and validation of the results. Alternatively, the inputs to CNNs were the spectrograms extracted from the time-frequency dataset, being pre-labeled in four intensities classes of pain during offline and online training with the NRS. RESULTS: The tendency of nociception could be predicted by monitoring the changes in the FOIM parameters' values or by retraining online the network. Moreover, the tissue heterogeneity, assumed during nociception, could follow the NRS trends. The online predictions of retrained CNN have more specific trends to NRS than pain predicted by the offline population-trained CNN. CONCLUSION: We propose tailored online identification and deep learning for artefact corrupted environment. The results indicate estimations with the potential to avoid over-dosing due to the objectivity of the information. SIGNIFICANCE: Models and artificial intelligence (AI) allow objective and personalized nociception-antinociception prediction in the patient safety era for the design and evaluation of closed-loop analgesia controllers.

2.
Sensors (Basel) ; 21(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502811

RESUMO

The present manuscript aims at raising awareness of the endless possibilities of fractional calculus applied not only to system identification and control engineering, but also into sensing and filtering domains. The creation of the fractance device has enabled the physical realization of a new array of sensors capable of gathering more information. The same fractional-order electronic component has led to the possibility of exploring analog filtering techniques from a practical perspective, enlarging the horizon to a wider frequency range, with increased robustness to component variation, stability and noise reduction. Furthermore, fractional-order digital filters have developed to provide an alternative solution to higher-order integer-order filters, with increased design flexibility and better performance. The present study is a comprehensive review of the latest advances in fractional-order sensors and filters, with a focus on design methodologies and their real-life applicability reported in the last decade. The potential enhancements brought by the use of fractional calculus have been exploited as well in sensing and filtering techniques. Several extensions of the classical sensing and filtering methods have been proposed to date. The basics of fractional-order filters are reviewed, with a focus on the popular fractional-order Kalman filter, as well as those related to sensing. A detailed presentation of fractional-order filters is included in applications such as data transmission and networking, electrical and chemical engineering, biomedicine and various industrial fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA