Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1125597, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894940

RESUMO

In neural prostheses, intensity modulation of a single channel (i.e., through a single stimulating electrode) has been achieved by increasing the magnitude or width of each stimulation pulse, which risks eliciting pain or paraesthesia; and by changing the stimulation rate, which leads to concurrent changes in perceived frequency. In this study, we sought to render a perception of tactile intensity and frequency independently, by means of temporal pulse train patterns of fixed magnitude, delivered non-invasively. Our psychophysical study exploits a previously discovered frequency coding mechanism, where the perceived frequency of stimulus pulses grouped into periodic bursts depends on the duration of the inter-burst interval, rather than the mean pulse rate or periodicity. When electrical stimulus pulses were organised into bursts, perceived intensity was influenced by the number of pulses within a burst, while perceived frequency was determined by the time between the end of one burst envelope and the start of the next. The perceived amplitude was modulated by 1.6× while perceived frequency was varied independently by 2× within the tested range (20-40 Hz). Thus, the sensation of intensity might be controlled independently from frequency through a single stimulation channel without having to vary the injected electrical current. This can form the basis for improving strategies in delivering more complex and natural sensations for prosthetic hand users.

2.
J Physiol ; 602(9): 2089-2106, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38544437

RESUMO

When manipulating objects, humans begin adjusting their grip force to friction within 100 ms of contact. During motor adaptation, subjects become aware of the slipperiness of touched surfaces. Previously, we have demonstrated that humans cannot perceive frictional differences when surfaces are brought in contact with an immobilised finger, but can do so when there is submillimeter lateral displacement or subjects actively make the contact movement. Similarly, in, we investigated how humans perceive friction in the absence of intentional exploratory sliding or rubbing movements, to mimic object manipulation interactions. We used a two-alternative forced-choice paradigm in which subjects had to reach and touch one surface followed by another, and then indicate which felt more slippery. Subjects correctly identified the more slippery surface in 87 ± 8% of cases (mean ± SD; n = 12). Biomechanical analysis of finger pad skin displacement patterns revealed the presence of tiny (<1 mm) localised slips, known to be sufficient to perceive frictional differences. We tested whether these skin movements arise as a result of natural hand reaching kinematics. The task was repeated with the introduction of a hand support, eliminating the hand reaching movement and minimising fingertip movement deviations from a straight path. As a result, our subjects' performance significantly declined (66 ± 12% correct, mean ± SD; n = 12), suggesting that unrestricted reaching movement kinematics and factors such as physiological tremor, play a crucial role in enhancing or enabling friction perception upon initial contact. KEY POINTS: More slippery objects require a stronger grip to prevent them from slipping out of hands. Grip force adjustments to friction driven by tactile sensory signals are largely automatic and do not necessitate cognitive involvement; nevertheless, some associated awareness of grip surface slipperiness under such sensory conditions is present and helps to select a safe and appropriate movement plan. When gripping an object, tactile receptors provide frictional information without intentional rubbing or sliding fingers over the surface. However, we have discovered that submillimeter range lateral displacement might be required to enhance or enable friction sensing. The present study provides evidence that such small lateral movements causing localised partial slips arise and are an inherent part of natural reaching movement kinematics.


Assuntos
Fricção , Movimento , Humanos , Masculino , Fenômenos Biomecânicos , Adulto , Feminino , Movimento/fisiologia , Adulto Jovem , Braço/fisiologia , Percepção do Tato/fisiologia , Dedos/fisiologia , Força da Mão/fisiologia , Tato/fisiologia , Desempenho Psicomotor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA