Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Microlife ; 5: uqae006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659623

RESUMO

The mimivirus 1.2 Mb genome was shown to be organized into a nucleocapsid-like genomic fiber encased in the nucleoid compartment inside the icosahedral capsid. The genomic fiber protein shell is composed of a mixture of two GMC-oxidoreductase paralogs, one of them being the main component of the glycosylated layer of fibrils at the surface of the virion. In this study, we determined the effect of the deletion of each of the corresponding genes on the genomic fiber and the layer of surface fibrils. First, we deleted the GMC-oxidoreductase, the most abundant in the genomic fiber, and determined its structure and composition in the mutant. As expected, it was composed of the second GMC-oxidoreductase and contained 5- and 6-start helices similar to the wild-type fiber. This result led us to propose a model explaining their coexistence. Then we deleted the GMC-oxidoreductase, the most abundant in the layer of fibrils, to analyze its protein composition in the mutant. Second, we showed that the fitness of single mutants and the double mutant were not decreased compared with the wild-type viruses under laboratory conditions. Third, we determined that deleting the GMC-oxidoreductase genes did not impact the glycosylation or the glycan composition of the layer of surface fibrils, despite modifying their protein composition. Because the glycosylation machinery and glycan composition of members of different clades are different, we expanded the analysis of the protein composition of the layer of fibrils to members of the B and C clades and showed that it was different among the three clades and even among isolates within the same clade. Taken together, the results obtained on two distinct central processes (genome packaging and virion coating) illustrate an unexpected functional redundancy in members of the family Mimiviridae, suggesting this may be the major evolutionary force behind their giant genomes.

2.
Nat Protoc ; 19(1): 3-29, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37964008

RESUMO

Giant viruses (GVs) provide an unprecedented source of genetic innovation in the viral world and are thus, besides their importance in basic and environmental virology, in the spotlight for bioengineering advances. Their host, Acanthamoeba castellanii, is an accidental human pathogen that acts as a natural host and environmental reservoir of other human pathogens. Tools for genetic manipulation of viruses and host were lacking. Here, we provide a detailed method for genetic manipulation of A. castellanii and the GVs it plays host to by using CRISPR-Cas9 or homologous recombination. We detail the steps of vector preparation (4 d), transfection of amoeba cells (1 h), infection (1 h), selection (5 d for viruses, 2 weeks for amoebas) and cloning of recombinant viruses (4 d) or amoebas (2 weeks). This procedure takes ~3 weeks or 1 month for the generation of recombinant viruses or amoebas, respectively. This methodology allows the generation of stable gene modifications, which was not possible by using RNA silencing, the only previously available reverse genetic tool. We also include detailed sample-preparation steps for protein localization by immunofluorescence (4 h), western blotting (4 h), quantification of viral particles by optical density (15 min), calculation of viral lethal dose 50 (7 d) and quantification of DNA replication by quantitative PCR (4 h) to allow efficient broad phenotyping of recombinant organisms. This methodology allows the function of thousands of ORFan genes present in GVs, as well as the complex pathogen-host, pathogen-pathogen or pathogen-symbiont interactions in A. castellanii, to be studied in vivo.


Assuntos
Acanthamoeba castellanii , Vírus Gigantes , Vírus , Humanos , Acanthamoeba castellanii/genética
3.
Nat Commun ; 14(1): 428, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702819

RESUMO

Giant viruses (GVs) are a hotspot of unresolved controversies since their discovery, including the definition of "Virus" and their origin. While increasing knowledge of genome diversity has accumulated, GV functional genomics was largely neglected. Here, we describe an experimental framework to genetically modify nuclear GVs and their host Acanthamoeba castellanii using CRISPR/Cas9, shedding light on the evolution from small icosahedral viruses to amphora-shaped GVs. Ablation of the icosahedral major capsid protein in the phylogenetically-related mollivirus highlights a transition in virion shape and size. We additionally demonstrate the existence of a reduced core essential genome in pandoravirus, reminiscent of their proposed smaller ancestors. This proposed genetic expansion led to increased genome robustness, indicating selective pressures for adaptation to uncertain environments. Overall, we introduce new tools for manipulation of the unexplored genome of nuclear GVs and provide experimental evidence suggesting that viral gigantism has aroused as an emerging trait.


Assuntos
Acanthamoeba castellanii , Vírus Gigantes , Vírus , Vírus de DNA/genética , Sistemas CRISPR-Cas/genética , Acanthamoeba castellanii/genética , Vírus Gigantes/genética , Vírus/genética , Genoma Viral/genética , Filogenia , Evolução Molecular
4.
PLoS Pathog ; 18(3): e1010438, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35325010

RESUMO

Regulated microneme secretion governs motility, host cell invasion and egress in the obligate intracellular apicomplexans. Intracellular calcium oscillations and phospholipid dynamics critically regulate microneme exocytosis. Despite its importance for the lytic cycle of these parasites, molecular mechanistic details about exocytosis are still missing. Some members of the P4-ATPases act as flippases, changing the phospholipid distribution by translocation from the outer to the inner leaflet of the membrane. Here, the localization and function of the repertoire of P4-ATPases was investigated across the lytic cycle of Toxoplasma gondii. Of relevance, ATP2B and the non-catalytic subunit cell division control protein 50.4 (CDC50.4) form a stable heterocomplex at the parasite plasma membrane, essential for microneme exocytosis. This complex is responsible for flipping phosphatidylserine, which presumably acts as a lipid mediator for organelle fusion with the plasma membrane. Overall, this study points toward the importance of phosphatidylserine asymmetric distribution at the plasma membrane for microneme exocytosis.


Assuntos
Toxoplasma , Membrana Celular/metabolismo , Exocitose , Micronema , Fosfatidilserinas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo
5.
Cell ; 184(16): 4237-4250.e19, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34297924

RESUMO

The organization of genomic DNA into defined nucleosomes has long been viewed as a hallmark of eukaryotes. This paradigm has been challenged by the identification of "minimalist" histones in archaea and more recently by the discovery of genes that encode fused remote homologs of the four eukaryotic histones in Marseilleviridae, a subfamily of giant viruses that infect amoebae. We demonstrate that viral doublet histones are essential for viral infectivity, localize to cytoplasmic viral factories after virus infection, and ultimately are found in the mature virions. Cryogenic electron microscopy (cryo-EM) structures of viral nucleosome-like particles show strong similarities to eukaryotic nucleosomes despite the limited sequence identify. The unique connectors that link the histone chains contribute to the observed instability of viral nucleosomes, and some histone tails assume structural roles. Our results further expand the range of "organisms" that require nucleosomes and suggest a specialized function of histones in the biology of these unusual viruses.


Assuntos
Vírus de DNA/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Amoeba/virologia , Corantes Fluorescentes/metabolismo , Histonas/química , Modelos Moleculares , Proteômica , Vírion/metabolismo
6.
mSphere ; 5(6)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33361125

RESUMO

Toxoplasma gondii and members of the genus Plasmodium are obligate intracellular parasites that leave their infected host cell upon a tightly controlled process of egress. Intracellular replication of the parasites occurs within a parasitophorous vacuole, and its membrane as well as the host plasma membrane need to be disrupted during egress, leading to host cell lysis. While several parasite-derived factors governing egress have been identified, much less is known about host cell factors involved in this process. Previously, RNA interference (RNAi)-based knockdown and antibody-mediated depletion identified a host signaling cascade dependent on guanine nucleotide-binding protein subunit alpha q (GNAQ) to be required for the egress of Toxoplasma tachyzoites and Plasmodium blood stage merozoites. Here, we used CRISPR/Cas9 technology to generate HeLa cells deficient in GNAQ and tested their capacity to support the egress of T. gondii tachyzoites and Plasmodium berghei liver stage parasites. While we were able to confirm the importance of GNAQ for the egress of T. gondii, we found that the egress of P. berghei liver stages was unaffected in the absence of GNAQ. These results may reflect differences between the lytic egress process in apicomplexans and the formation of host cell-derived vesicles termed merosomes by P. berghei liver stages.IMPORTANCE The coordinated release of apicomplexan parasites from infected host cells prior to reinvasion is a critical process for parasite survival and the spread of infection. While Toxoplasma tachyzoites and Plasmodium blood stages induce a fast disruption of their surrounding membranes during their egress from host cells, Plasmodium liver stages keep the host cell membrane intact and leave their host cell in host cell-derived vesicles called merosomes. The knockout of GNAQ, a protein involved in G-protein-coupled receptor signaling, demonstrates the importance of this host factor for the lytic egress of T. gondii tachyzoites. Contrastingly, the egress of P. berghei is independent of GNAQ at the liver stage, indicating the existence of a mechanistically distinct strategy to exit the host cell.


Assuntos
Membrana Celular/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Hepatócitos/parasitologia , Plasmodium berghei/fisiologia , Animais , Sistemas CRISPR-Cas , Células HeLa , Humanos , Malária/parasitologia , Plasmodium berghei/genética , Toxoplasma/metabolismo
7.
mBio ; 11(5)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082261

RESUMO

Apicomplexans are obligate intracellular parasites harboring three sets of unique secretory organelles termed micronemes, rhoptries, and dense granules that are dedicated to the establishment of infection in the host cell. Apicomplexans rely on the endolysosomal system to generate the secretory organelles and to ingest and digest host cell proteins. These parasites also possess a metabolically relevant secondary endosymbiotic organelle, the apicoplast, which relies on vesicular trafficking for correct incorporation of nuclear-encoded proteins into the organelle. Here, we demonstrate that the trafficking and destination of vesicles to the unique and specialized parasite compartments depend on SNARE proteins that interact with tethering factors. Specifically, all secreted proteins depend on the function of SLY1 at the Golgi. In addition to a critical role in trafficking of endocytosed host proteins, TgVps45 is implicated in the biogenesis of the inner membrane complex (alveoli) in both Toxoplasma gondii and Plasmodium falciparum, likely acting in a coordinated manner with Stx16 and Stx6. Finally, Stx12 localizes to the endosomal-like compartment and is involved in the trafficking of proteins to the apical secretory organelles rhoptries and micronemes as well as to the apicoplast.IMPORTANCE The phylum of Apicomplexa groups medically relevant parasites such as those responsible for malaria and toxoplasmosis. As members of the Alveolata superphylum, these protozoans possess specialized organelles in addition to those found in all members of the eukaryotic kingdom. Vesicular trafficking is the major route of communication between membranous organelles. Neither the molecular mechanism that allows communication between organelles nor the vesicular fusion events that underlie it are completely understood in Apicomplexa. Here, we assessed the function of SEC1/Munc18 and SNARE proteins to identify factors involved in the trafficking of vesicles between these various organelles. We show that SEC1/Munc18 in interaction with SNARE proteins allows targeting of vesicles to the inner membrane complex, prerhoptries, micronemes, apicoplast, and vacuolar compartment from the endoplasmic reticulum, Golgi apparatus, or endosomal-like compartment. These data provide an exciting look at the "ZIP code" of vesicular trafficking in apicomplexans, essential for precise organelle biogenesis, homeostasis, and inheritance.


Assuntos
Apicoplastos/metabolismo , Vesículas Citoplasmáticas/metabolismo , Proteínas Munc18/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas SNARE/metabolismo , Toxoplasma/metabolismo , Apicoplastos/genética , Vesículas Citoplasmáticas/genética , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Proteínas Munc18/genética , Plasmodium falciparum/genética , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas SNARE/genética , Toxoplasma/genética
8.
Annu Rev Microbiol ; 73: 579-599, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31500539

RESUMO

The Apicomplexa phylum includes a large group of obligate intracellular protozoan parasites responsible for important diseases in humans and animals. Toxoplasma gondii is a widespread parasite with considerable versatility, and it is capable of infecting virtually any warm-blooded animal, including humans. This outstanding success can be attributed at least in part to an efficient and continuous sensing of the environment, with a ready-to-adapt strategy. This review updates the current understanding of the signals governing the lytic cycle of T. gondii, with particular focus on egress from infected cells, a key step for balancing survival, multiplication, and spreading in the host. We cover the recent advances in the conceptual framework of regulation of microneme exocytosis that ensures egress, motility, and invasion. Particular emphasis is given to the trigger molecules and signaling cascades regulating exit from host cells.


Assuntos
Secreções Corporais/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Transdução de Sinais , Toxoplasma , Actomiosina , Animais , Secreções Corporais/metabolismo , Sinalização do Cálcio , Adesão Celular , Movimento Celular , Humanos , Proteínas Motores Moleculares/metabolismo , Organelas/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasma/ultraestrutura
9.
PLoS Pathog ; 15(5): e1007670, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31121005

RESUMO

To elicit effective invasion and egress from infected cells, obligate intracellular parasites of the phylum Apicomplexa rely on the timely and spatially controlled exocytosis of specialized secretory organelles termed the micronemes. The effector molecules and signaling events underpinning this process are intricate; however, recent advances within the field of Toxoplasma gondii research have facilitated a broader understanding as well as a more integrated view of this complex cascade of events and have unraveled the importance of phosphatidic acid (PA) as a lipid mediator at multiple steps in this process.


Assuntos
Cálcio/metabolismo , GMP Cíclico/metabolismo , Exocitose/fisiologia , Organelas/metabolismo , Ácidos Fosfatídicos/metabolismo , Toxoplasma/fisiologia , Toxoplasmose/parasitologia , Animais , Interações Hospedeiro-Parasita , Humanos , Organelas/parasitologia , Transporte Proteico , Proteínas de Protozoários/metabolismo , Transdução de Sinais
10.
Nat Microbiol ; 4(3): 420-428, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742070

RESUMO

Toxoplasma gondii establishes a lifelong chronic infection in humans and animals1. Host cell entry and egress are key steps in the lytic cycle of this obligate intracellular parasite, ensuring its survival and dissemination. Egress is temporally orchestrated, underpinned by the exocytosis of secretory organelles called micronemes. At any point during intracellular replication, deleterious environmental changes such as the loss of host cell integrity can trigger egress2 through the activation of the cyclic guanosine monophosphate-dependent protein kinase G3. Notably, even in the absence of extrinsic signals, the parasites egress from infected cells in a coordinated manner after five to six cycles of endodyogeny multiplication. Here we show that diacylglycerol kinase 2 is secreted into the parasitophorous vacuole, where it produces phosphatidic acid. Phosphatidic acid acts as an intrinsic signal that elicits natural egress upstream of an atypical guanylate cyclase (GC), which is uniquely conserved in alveolates4 and ciliates5, and composed of a P4-ATPase and two GC catalytic domains. Assembly of GC at the plasma membrane depends on two associated cofactors - the cell division control 50.1 and a unique GC organizer. This study reveals the existence of a signalling platform that responds to an intrinsic lipid mediator and extrinsic signals to control programmed and induced egress.


Assuntos
Guanilato Ciclase/metabolismo , Interações Hospedeiro-Parasita , Ácidos Fosfatídicos/metabolismo , Transdução de Sinais , Toxoplasma/crescimento & desenvolvimento , Linhagem Celular , Fibroblastos/parasitologia , Humanos , Proteínas de Protozoários/metabolismo
11.
EMBO J ; 36(21): 3250-3267, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29030485

RESUMO

Toxoplasma gondii encodes three protein kinase A catalytic (PKAc1-3) and one regulatory (PKAr) subunits to integrate cAMP-dependent signals. Here, we show that inactive PKAc1 is maintained at the parasite pellicle by interacting with acylated PKAr. Either a conditional knockdown of PKAr or the overexpression of PKAc1 blocks parasite division. Conversely, down-regulation of PKAc1 or stabilisation of a dominant-negative PKAr isoform that does not bind cAMP triggers premature parasite egress from infected cells followed by serial invasion attempts leading to host cell lysis. This untimely egress depends on host cell acidification. A phosphoproteome analysis suggested the interplay between cAMP and cGMP signalling as PKAc1 inactivation changes the phosphorylation profile of a putative cGMP-phosphodiesterase. Concordantly, inhibition of the cGMP-dependent protein kinase G (PKG) blocks egress induced by PKAc1 inactivation or environmental acidification, while a cGMP-phosphodiesterase inhibitor circumvents egress repression by PKAc1 or pH neutralisation. This indicates that pH and PKAc1 act as balancing regulators of cGMP metabolism to control egress. These results reveal a crosstalk between PKA and PKG pathways to govern egress in T. gondii.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/genética , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/genética , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/genética , Interações Hospedeiro-Parasita , Proteínas de Protozoários/genética , Toxoplasma/genética , 3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Acilação , Linhagem Celular Transformada , AMP Cíclico/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Fibroblastos/parasitologia , Regulação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Estágios do Ciclo de Vida/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/metabolismo
12.
Cell Host Microbe ; 19(3): 349-60, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26962945

RESUMO

The obligate intracellular lifestyle of apicomplexan parasites necessitates an invasive phase underpinned by timely and spatially controlled secretion of apical organelles termed micronemes. In Toxoplasma gondii, extracellular potassium levels and other stimuli trigger a signaling cascade culminating in phosphoinositide-phospholipase C (PLC) activation, which generates the second messengers diacylglycerol (DAG) and IP3 and ultimately results in microneme secretion. Here we show that a delicate balance between DAG and its downstream product, phosphatidic acid (PA), is essential for controlling microneme release. Governing this balance is the apicomplexan-specific DAG-kinase-1, which interconverts PA and DAG, and whose depletion impairs egress and causes parasite death. Additionally, we identify an acylated pleckstrin-homology (PH) domain-containing protein (APH) on the microneme surface that senses PA during microneme secretion and is necessary for microneme exocytosis. As APH is conserved in Apicomplexa, these findings highlight a potentially widely used mechanism in which key lipid mediators regulate microneme exocytosis.


Assuntos
Organelas/efeitos dos fármacos , Organelas/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteínas de Protozoários/metabolismo , Transdução de Sinais , Toxoplasma/fisiologia , Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo
13.
Antioxid Redox Signal ; 24(4): 205-216, 2016 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-26381228

RESUMO

AIMS: Members of the thioredoxin (Trx) protein family participate mainly in redox pathways and have not been associated with Fe/S binding, in contrast to some closely related glutaredoxins (Grxs). Cestode parasites possess an unusual diversity of Trxs and Trx-related proteins with unexplored functions. In this study, we addressed the biochemical characterization of a new class of Trx-related protein (IsTRP) and a classical monothiol Grx (EgGrx5) from the human pathogen Echinococcus granulosus. RESULTS: The dimeric form of IsTRP coordinates Fe2S2 in a glutathione-independent manner; instead, Fe/S binding relies on the CXXC motif conserved among Trxs. This novel binding mechanism allows holo-IsTRP to be highly resistant to oxidation. IsTRP lacks canonical reductase activities. Mitochondrially targeted IsTRP aids growth of a Grx5 null yeast strain. Similar complementation assays performed with EgGrx5 revealed functional conservation for class II Grxs, despite the presence of nonconserved structural elements. IsTRP is a cestode lineage-specific protein highly expressed in the gravid adult worm, which releases the infective stage critical for dissemination. INNOVATION: IsTRP is the first member from the Trx family to be reported to bind Fe/S. We disclose a novel mechanism of Fe/S coordination within the Trx folding unit, which renders the cluster highly resistant to oxidation-mediated disassembly. CONCLUSION: We demonstrate that IsTRP defines a new protein family within the Trx superfamily, confirm the conservation of function for class II Grx from nonphylogenetically related species, and highlight the versatility of the Trx folding unit to acquire Fe/S binding as a recurrent emergent function. Antioxid. Redox Signal. 00, 000-000.

14.
Molecules ; 20(7): 11793-807, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26132905

RESUMO

Parasitic flatworms cause serious infectious diseases that affect humans and livestock in vast regions of the world, yet there are few effective drugs to treat them. Thioredoxin glutathione reductase (TGR) is an essential enzyme for redox homeostasis in flatworm parasites and a promising pharmacological target. We purified to homogeneity and characterized the TGR from the tapeworm Mesocestoides vogae (syn. M. corti). This purification revealed absence of conventional TR and GR. The glutathione reductase activity of the purified TGR exhibits a hysteretic behavior typical of flatworm TGRs. Consistently, M. vogae genome analysis revealed the presence of a selenocysteine-containing TGR and absence of conventional TR and GR. M. vogae thioredoxin and glutathione reductase activities were inhibited by 3,4-bis(phenylsulfonyl)-1,2,5-oxadiazole N2-oxide (VL16E), an oxadiazole N-oxide previously identified as an inhibitor of fluke and tapeworm TGRs. Finally, we show that mice experimentally infected with M. vogae tetrathyridia and treated with either praziquantel, the reference drug for flatworm infections, or VL16E exhibited a 28% reduction of intraperitoneal larvae numbers compared to vehicle treated mice. Our results show that oxadiazole N-oxide is a promising chemotype in vivo and highlights the convenience of M. vogae as a model for rapid assessment of tapeworm infections in vivo.


Assuntos
Cestoides/efeitos dos fármacos , Infecções por Cestoides/parasitologia , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Oxidiazóis/farmacologia , Sequência de Aminoácidos , Animais , Cestoides/metabolismo , Mesocestoides , Camundongos , Dados de Sequência Molecular , Complexos Multienzimáticos/química , NADH NADPH Oxirredutases/química , Homologia de Sequência de Aminoácidos
16.
Cir. Urug ; 63(4/6): 150-3, jul.-dic. 1993. ilus
Artigo em Espanhol | LILACS | ID: lil-157406

RESUMO

En Uruguay, el cáncer colorrectal tiene una alta tasa de mortalidad. La cirugía exclusiva, tiene 13-26 por ciento de recurrencias locales. La irradiación preoperatoria ha demostrado mejorar la resecabilidad y el control local. El objetivo de este protocolo es disminuir el porcentaje de recidiva local, utilizando radioterapia (RT) preoperatoria y quimioterapia concomitante que potencie el efecto de la RT, mejorando así el cociente terapéutico


Assuntos
Humanos , Radioterapia , Neoplasias Retais , Fluoruracila/uso terapêutico , Leucovorina/uso terapêutico , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/radioterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA