Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Technol ; 42(15): 2292-2303, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31810406

RESUMO

A wide variety of pharmaceuticals are discharged in water courses on a daily basis due to their incomplete removal from effluent in treatment plants. The aim of the current study was to assess the occurrence, fate and removal of pharmaceuticals from effluent and sludge samples collected in the biggest sanitary sewer plant in Southern Brazil. In total, 13 pharmaceuticals were detected in the influent through UHPLC-MS/M - paracetamol and caffeine recorded the highest concentrations, 137.98 and 35.29 µg L-1, respectively. The treated effluent presented 11 compounds. Antibiotics were the class recording the widest diversity; metronidazole showed the lowest concentration (0.023 µg L-1) and sulfamethoxazole presented the highest concentration (1.374 µg L-1) in influent samples. Seven pharmaceuticals were absorbed by the sludge; among them, one finds caffeine, ciprofloxacin and ofloxacin, which were quantified both in the effluent and in the sludge. On the other hand, doxycycline, fenbendazole, norfloxacin and tetracycline were only detected in sludge samples - their concentrations ranged from 0.026 to 5.034 mg kg-1. Clindamycin, oxytetracycline, sulfathiazole and trimethoprim concentrations increased throughout the treatment. There were high paracetamol and caffeine removal rates (>97%), and it may have happened due to degradation, photodegradation or chemical reaction. Ciprofloxacin and ofloxacin removal rate exceeded 83% mainly due to their sorption by sludge. Finally, the mass balance analysis highlighted high pharmaceutical loads (511.466 g d-1) discharged into recipient waterbodies. This outcome demands broadening the removal of these pharmaceuticals from sewage.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Brasil , Esgotos , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
2.
Ecotoxicology ; 29(9): 1315-1326, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32797393

RESUMO

Sewage effluent effects on the biochemical parameters of Astyanax bimaculatus organs were investigateted. Treated sewage was collected in a treatment plant; 43 compounds, among them, pharmaceuticals and hormones, were investigated. Caffeine, ciprofloxacin, clindamycin, ofloxacin, oxytetracycline, paracetamol, sulfadiazine, sulfamethoxazole, sulfathiazole and tylosin waste was detected in the collected material. Fish were divided into four groups: control, TSE (treated sewage effluent), TSE + P (TSE with increased concentration of five pharmaceuticals) and PTSE (TSE + P post-treated with O3/H2O2/UV). Biochemical parameters were evaluated in different organs after 14-day exposure. TBARS levels increased significantly in the brain of animals in the TSE and TSE + P groups in comparison to the control. There was significant reduction in TBARS levels recorded for the liver, muscle and gills of animals in the PTSE group in comparison to those of animals in the other groups. AChE activity reduced in the muscle of animals in the groups showing the highest pharmaceutical concentrations. CAT activity in the liver of animals in groups exposed to pharmaceutical effluent was inhibited. GST activity increased in brain of animals in the TSE + P and PTSE groups, whereas reduced levels of this activity were observed in liver of animals in the TSE group. Increased GST activity was observed in the brain of animals in TSE + P and PTSE groups. Based on integrated biomarker response values, the TSE + P group presented greater changes in the analyzed parameters. Results point out that pharmaceutical waste can cause oxidative stress, as well as affect biochemical and enzymatic parameters in Astyanax sp. Post-treatment can also reduce damages caused to fish, even in case of the likely formation of metabolites. Based on these results, these metabolites can be less toxic than the original compounds; however, they were not able to fully degrade the pharmaceutical waste found in the sewage, which can interfere in fish metabolism.


Assuntos
Monitoramento Ambiental , Preparações Farmacêuticas , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/toxicidade , Animais , Peixes , Brânquias , Fígado , Esgotos
3.
Eng. sanit. ambient ; 23(3): 517-526, maio-jun. 2018. tab, graf
Artigo em Português | LILACS | ID: biblio-953248

RESUMO

RESUMO A presente pesquisa avaliou o potencial microbiano de uma biopilha na biorremediação de solos contaminados por hidrocarbonetos, montada em uma base de distribuição de combustíveis na região metropolitana de Porto Alegre, Rio Grande do Sul. Desta biopilha, foram avaliadas as concentrações dos hidrocarbonetos totais de petróleo (HTP) e de compostos benzeno, tolueno, etilbenzeno e xilenos (BTEX), em nove pontos, durante quatro etapas de operação e em três profundidades por ponto. De cada coleta, também foram reservadas amostras de solo para realização das análises microbiológicas. A partir dessas amostras, buscou-se identificar fungos e leveduras pela análise de suas estruturas reprodutivas em lâminas de microcultivo, e bactérias pela técnica da Reação em Cadeira da Polimerase (PCR) e sequenciamento do gene que codifica o RNAr 16S. Ainda, avaliou-se a capacidade dos microrganismos isolados em degradar óleo diesel comercial, utilizando o indicador redox 2,6-diclorofenol indofenol (DCPIP). Como resultado deste estudo, observaram-se elevados percentuais de redução nas concentrações de HTP e BTEX na biopilha, como 92 e 100%, respectivamente. Das amostras de solo da biopilha, foram isoladas 101 cepas de microrganismos, das quais foram identificadas 19 cepas de fungos filamentosos, 34 de bactérias e 1 de levedura. Os resultados evidenciaram a capacidade de alguns gêneros de fungos, como Aspergillus, Trichoderma, Penicillium, Cladosporium e Verticillium, e bactérias, como Bacillus spp. e Streptomyces sp., em degradar hidrocarbonetos constituintes do óleo diesel comercial.


ABSTRACT This research evaluated the microbial potential of a biopile in bioremediation of soils contaminated by hydrocarbons, mounted on a fuel distribution base in the metropolitan region of Porto Alegre, Rio Grande do Sul. Of this biopile were evaluated concentrations of total petroleum hydrocarbons (TPH) and benzene compounds, toluene, ethylbenzene and xylenes (BTEX) at nine points, for four stages of operation and a point in three depths. Of each collection were also reserved sampled soil to perform the microbiological testing. From the samples, we sought to identify fungi and yeasts by analyzing their reproductive structures microcultivation blades, and bacteria by the technique of Polymerase Reaction Chair (PCR) and gene sequencing encoding the 16S rRNA. Still, we evaluated the ability of microorganisms to degrade commercial diesel oil, using the redox indicator 2,6-dichlorophenol indophenol (DCPIP). As result of this study, there was a high percentage reduction in the concentration of TPH and BTEX in biopilha as 92 and 100%, respectively. Of soil samples were isolated from biopilha 101 strains of microorganisms, of which 19 were identified strains of filamentous fungi and 34 bacterial yeast. The results showed the ability of some genera of fungi such as Aspergillus, Trichoderma, Penicillium, Cladosporium and Verticillium and bacteria such as Bacillus spp. and Streptomyces sp. to degrade hydrocarbons constituents of commercial diesel oil.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA