Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(6): eadh5272, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335288

RESUMO

Studies of laser-heated materials on femtosecond timescales have shown that the interatomic potential can be perturbed at sufficiently high laser intensities. For gold, it has been postulated to undergo a strong stiffening leading to an increase of the phonon energies, known as phonon hardening. Despite efforts to investigate this behavior, only measurements at low absorbed energy density have been performed, for which the interpretation of the experimental data remains ambiguous. By using in situ single-shot x-ray diffraction at a hard x-ray free-electron laser, the evolution of diffraction line intensities of laser-excited Au to a higher energy density provides evidence for phonon hardening.

2.
Phys Rev Lett ; 126(22): 225703, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34152164

RESUMO

We show that in noncollinear magnetic molecules, nonadiabatic (dynamical) effects due to the electron-vibron coupling are time-reversal symmetry breaking interactions for the vibrational field. Because the electronic wave function cannot be chosen as real in these molecules, a nonzero geometric vector potential (Berry connection) arises. As a result, an intrinsic nonzero vibrational angular momentum occurs even for nondegenerate modes and in the absence of external probes. The vibronic modes can then be seen as elementary quantum particles carrying a sizeable angular momentum. As a proof of concept, we demonstrate the magnitude of this topological effect by performing nonadiabatic first principles calculations on platinum clusters and by showing that these molecules host sizeable intrinsic phonon angular momenta comparable to the orbital electronic ones in itinerant ferromagnets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA