Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Pathogens ; 12(12)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38133316

RESUMO

Tuberculosis (TB) continues to pose a global health challenge, exacerbated by the rise of drug-resistant strains. The development of new TB therapies is an arduous and time-consuming process. To expedite the discovery of effective treatments, computational structure-based drug repurposing has emerged as a promising strategy. From this perspective, conditionally essential targets present a valuable opportunity, and the mycobactin biosynthesis pathway stands out as a prime example highlighting the intricate response of Mycobacterium tuberculosis (Mtb) to changes in iron availability. This study focuses on the repurposing and revival of FDA-approved drugs (library) as potential inhibitors of MbtA, a crucial enzyme in mycobactin biosynthesis in Mtb conserved among all species of mycobacteria. The literature suggests this pathway to be associated with drug efflux pumps, which potentially contribute to drug resistance. This makes it a potential target for antitubercular drug discovery. Herein, we utilized cheminformatics and structure-based drug repurposing approaches, viz., molecular docking, dynamics, and PCA analysis, to decode the intermolecular interactions and binding affinity of the FDA-reported molecules against MbtA. Virtual screening revealed ten molecules with significant binding affinities and interactions with MbtA. These drugs, originally designed for different therapeutic indications (four antiviral, three anticancer, one CYP450 inhibitor, one ACE inhibitor, and one leukotriene antagonist), were repurposed as potential MbtA inhibitors. Furthermore, our study explores the binding modes and interactions between these drugs and MbtA, shedding light on the structural basis of their inhibitory potential. Principal component analysis highlighted significant motions in MbtA-bound ligands, emphasizing the stability of the top protein-ligand complexes (PLCs). This computational approach provides a swift and cost-effective method for identifying new MbtA inhibitors, which can subsequently undergo validation through experimental assays. This streamlined process is facilitated by the fact that these compounds are already FDA-approved and have established safety and efficacy profiles. This study has the potential to lay the groundwork for addressing the urgent global health challenge at hand, specifically in the context of combating antimicrobial resistance (AMR) and tuberculosis (TB).

2.
Chem Biodivers ; 20(9): e202300848, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37590495

RESUMO

It is quite challenging to find out bioactive molecules in the vast chemical universe. Quinone moiety is a unique structure with a variety of biological properties, particularly in the treatment of cancer. In an effort to develop potent and secure antiproliferative lead compounds, five quinolinequinones (AQQ1-5) described previously have been selected and submitted to the National Cancer Institute (NCI) of Bethesda to envisage their antiproliferative profile based on the NCI Developmental Therapeutics Program. According to the preliminary in vitro single-dose anticancer screening, four of five quinolinequinones (AQQ2-5) were selected for five-dose screening and they displayed promising antiproliferative effects against several cancer types. All AQQs showed a excellent anticancer profile with low micromolar GI50 and TGI values against all leukemia cell lines, some non-small cell lung and ovarian cancer, most colon, melanoma, and renal cancer, and in addition to some breast cancer cell lines. AQQ2-5 reduced the proliferation of all leukemia cell lines at a single dose and five additional doses, as well as some non-small cell lung and ovarian cancer, the majority of colon cancer, melanoma and renal cancer, and some breast cancer cell lines. This motivated us to use in vitro, in silico, and in vivo technologies to further investigate their mode of action. We investigated the in vitro cytotoxic activities of the most promising compounds, AQQ2 and AQQ3, in HCT-116 colon cancer, MCF7 and T-47D breast cancer, and DU-145 prostate cancer cell lines, and HaCaT human keratinocytes. Concomitantly, IC50 values of AQQ2 and AAQ3 against MCF7 and T-47D cell lines of breast cancer, DU-145 cell lines of prostate cancer, HCT-116 cell lines of colon cancer, and HaCaT human keratinocytes were determined. AQQ2 exhibited anticancer activity through the induction of apoptosis and caused alterations in the cell cycle. In silico pharmacokinetic studies of all analogs have been carried out against ATR, CHK1, WEE1, CDK1, and CDK2. In addition to this, in vitro ADME and in vivo pharmacokinetic profiling for the most effective AAQ (AAQ2) have been studied.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias do Colo , Neoplasias Renais , Leucemia , Melanoma , Neoplasias Ovarianas , Neoplasias da Próstata , Humanos , Masculino , Feminino , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Proliferação de Células , Antineoplásicos/farmacologia , Antineoplásicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Simulação de Acoplamento Molecular , Relação Dose-Resposta a Droga
3.
J Med Chem ; 66(5): 3566-3587, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36790935

RESUMO

A new series of analogues or derivatives of the previously reported PPARα/γ dual agonist LT175 allowed the identification of ligand 10, which was able to potently activate both PPARα and -γ subtypes as full and partial agonists, respectively. Docking studies were performed to provide a molecular explanation for this different behavior on the two different targets. In vivo experiments showed that this compound induced a significant reduction in blood glucose and lipid levels in an STZ-induced diabetic mouse model displaying no toxic effects on bone, kidney, and liver. By examining in depth the antihyperglycemic activity of 10, we found out that it produced a slight but significant inhibition of the mitochondrial pyruvate carrier, acting also through insulin-independent mechanisms. This is the first example of a PPARα/γ dual agonist reported to show this inhibitory effect representing, therefore, the potential lead of a new class of drugs for treatment of dyslipidemic type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , PPAR alfa , Camundongos , Animais , PPAR alfa/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Transportadores de Ácidos Monocarboxílicos , Agonistas PPAR-gama , PPAR gama/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
4.
J Biomol Struct Dyn ; 41(9): 3926-3942, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35412437

RESUMO

The current global epidemic of the novel coronavirus (SARS-CoV-2) has been labeled a global public health emergency since it is causing substantial morbidity and mortality on daily basis. We need to identify an effective medication against SARS-CoV-2 because of its fast dissemination and re-emergence. This research is being carried out as part of a larger strategy to identify the most promising therapeutic targets using protein-protein interactions analysis. Mpro has been identified as one of the most important therapeutic targets. In this study, we did in-silico investigations to identify the target and further molecular docking, ADME, and toxicity prediction were done to assess the potential phyto-active antiviral compounds from Justicia adhatoda as powerful inhibitors of the Mpro of SARS-COV-2. We also investigated the capacity of these molecules to create stable interactions with the Mpro using 100 ns molecular dynamics simulation. The highest scoring compounds (taraxerol, friedelanol, anisotine, and adhatodine) were also found to exhibit excellent solubility and pharmacodynamic characteristics. We employed MMPBSA simulations to assess the stability of docked molecules in the Mpro binding site, revealing that the above compounds form the most stable complex with the Mpro. Network-based Pharmacology suggested that the selected compounds have various modes of action against SARS-CoV-2 that include immunoreaction enrichment, inflammatory reaction suppression, and more. These findings point to a promising class of drugs that should be investigated further in biochemical and cell-based studies to see their effectiveness against nCOVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , Justicia , SARS-CoV-2 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Folhas de Planta , Inibidores de Proteases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA