Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Biol Macromol ; 279(Pt 1): 135069, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39187102

RESUMO

One of the fundamental mechanisms developed by the host to contain the highly infectious and rapidly proliferating SARS-coronavirus is elevation of body temperature, a natural fallout of which is heat shock proteins over-expression. Here, for the first time, we demonstrate that the SARS-CoV-2 exploits the host Heat shock protein 70 (Hsp70) chaperone for its entry and propagation, and blocking it can combat the infection. SARS-CoV-2 infection as well as febrile temperature enhanced Hsp70 expression in host Vero E6 cells. Furthermore, heat shock or viral infection elevated the host cell autophagic response which is a prerequisite for viral propagation. In addition, Hsp70 protein demonstrated strong interaction with host Angiotensin-converting enzyme 2 (ACE2) as well as the receptor binding domain (RBD) of the SARS-CoV-2 Spike protein, indicating that interaction of Hsp70 with ACE2 and Spike protein may serve to protect them during febrile conditions. Suppressive and prophylactic treatment of Vero E6 cells with Hsp70 inhibitor PES, 2-(3-chlorophenyl) ethynesulfonamide (PES-Cl), abrogated viral infection more potently than the currently used drug Remdesivir. In conclusion, our study not only provides a fundamental insight into the role of host Hsp70 in SARS-CoV-2 pathogenesis, it paves the way for development of potent and irresistible anti-viral therapeutics.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Proteínas de Choque Térmico HSP70 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , SARS-CoV-2/efeitos dos fármacos , Chlorocebus aethiops , Células Vero , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Antivirais/farmacologia , Enzima de Conversão de Angiotensina 2/metabolismo , Humanos , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Sulfonamidas/farmacologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/metabolismo , Alanina/análogos & derivados , Alanina/farmacologia , Autofagia/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
2.
iScience ; 27(6): 109918, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38812541

RESUMO

Malaria parasite invasion to host erythrocytes is mediated by multiple interactions between merozoite ligands and erythrocyte receptors that contribute toward the development of disease pathology. Here, we report a novel antigen Plasmodium prohibitin "PfPHB2" and identify its cognate partner "Hsp70A1A" in host erythrocyte that plays a crucial role in mediating host-parasite interaction during merozoite invasion. Using small interfering RNA (siRNA)- and glucosamine-6-phosphate riboswitch (glmS) ribozyme-mediated approach, we show that loss of Hsp70A1A in red blood cells (RBCs) or PfPHB2 in infected red blood cells (iRBCs), respectively, inhibit PfPHB2-Hsp70A1A interaction leading to invasion inhibition. Antibodies targeting PfPHB2 and monoclonal antibody therapeutics against Hsp70A1A efficiently block parasite invasion. Recombinant PfPHB2 binds to RBCs which is inhibited by anti-PfPHB2 antibody and monoclonal antibody against Hsp70A1A. The validation of PfPHB2 to serve as antigen is further supported by detection of anti-PfPHB2 antibody in patient sera. Overall, this study proposes PfPHB2 as vaccine candidate and highlights the use of monoclonal antibody therapeutics for future malaria treatment.

3.
Front Cell Infect Microbiol ; 12: 924424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36250062

RESUMO

Post-translational modifications (PTMs) including phosphorylation and palmitoylation have emerged as crucial biomolecular events that govern many cellular processes including functioning of motility- and invasion-associated proteins during Plasmodium falciparum invasion. However, no study has ever focused on understanding the possibility of a crosstalk between these two molecular events and its direct impact on preinvasion- and invasion-associated protein-protein interaction (PPI) network-based molecular machinery. Here, we used an integrated in silico analysis to enrich two different catalogues of proteins: (i) the first group defines the cumulative pool of phosphorylated and palmitoylated proteins, and (ii) the second group represents a common set of proteins predicted to have both phosphorylation and palmitoylation. Subsequent PPI analysis identified an important protein cluster comprising myosin A tail interacting protein (MTIP) as one of the hub proteins of the glideosome motor complex in P. falciparum, predicted to have dual modification with the possibility of a crosstalk between the same. Our findings suggested that blocking palmitoylation led to reduced phosphorylation and blocking phosphorylation led to abrogated palmitoylation of MTIP. As a result of the crosstalk between these biomolecular events, MTIP's interaction with myosin A was found to be abrogated. Next, the crosstalk between phosphorylation and palmitoylation was confirmed at a global proteome level by click chemistry and the phenotypic effect of this crosstalk was observed via synergistic inhibition in P. falciparum invasion using checkerboard assay and isobologram method. Overall, our findings revealed, for the first time, an interdependence between two PTM types, their possible crosstalk, and its direct impact on MTIP-mediated invasion via glideosome assembly protein myosin A in P. falciparum. These insights can be exploited for futuristic drug discovery platforms targeting parasite molecular machinery for developing novel antimalarial therapeutics.


Assuntos
Antimaláricos , Proteínas do Citoesqueleto/metabolismo , Malária Falciparum , Proteínas de Membrana/metabolismo , Miosina não Muscular Tipo IIA , Humanos , Lipoilação , Malária Falciparum/parasitologia , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/metabolismo , Fosforilação , Plasmodium falciparum , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo
4.
ACS Infect Dis ; 8(10): 2106-2118, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044540

RESUMO

Phosphorylation and other post-translational modifications of red blood cell (RBC) proteins govern membrane function and have a role in the invasion of RBCs by the malaria parasite, Plasmodium falciparum. Furthermore, a percentage of RBC proteins are palmitoylated, although the functional consequences are unknown. We establish dynamic palmitoylation of 118 RBC membrane proteins using click chemistry and acyl biotin exchange (ABE)-coupled LC-MS/MS and characterize their involvement in controlling membrane organization and parasite invasion. RBCs were treated with a generic palmitoylation inhibitor, 2-bromopalmitate (2-BMP), and then analyzed using ABE-coupled LC-MS/MS. Only 42 of the 118 palmitoylated proteins detected were palmitoylated in the 2-BMP-treated sample, indicating that palmitoylation is dynamically regulated. Interestingly, membrane receptors such as semaphorin 7A, CR1, and ABCB6, which are known to be involved in merozoite interaction with RBCs and parasite invasion, were found to be dynamically palmitoylated, including the blood group antigen, Kell, whose antigenic abundance was significantly reduced following 2-BMP treatment. To investigate the involvement of Kell in merozoite invasion of RBCs, a specific antibody to its extracellular domain was used. The antibody targeting Kell inhibited merozoite invasion of RBCs by 50%, implying a role of Kell, a dynamically palmitoylated potent host-derived receptor, in parasite invasion. Furthermore, a significant reduction in merozoite contact with the RBC membrane and a consequent decrease in parasite invasion following 2-BMP treatment demonstrated that palmitoylation does indeed regulate RBC susceptibility to parasite invasion. Taken together, our findings revealed the dynamic palmitoylome of RBC membrane proteins and its role in P. falciparum invasion.


Assuntos
Antígenos de Grupos Sanguíneos , Malária Falciparum , Parasitos , Semaforinas , Animais , Biotina/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo , Cromatografia Líquida , Lipoilação , Proteínas de Membrana/metabolismo , Merozoítos/metabolismo , Parasitos/metabolismo , Plasmodium falciparum/metabolismo , Semaforinas/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA