Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 6(1): 288-297, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33463194

RESUMO

Cell microencapsulation is a promising approach to improve cell therapy outcomes by protecting injected cells from rapid dispersion and allowing bidirectional diffusion of nutrients, oxygen, and waste that promote cell survival in the target tissues. Here, we describe a simple and scalable emulsification method to encapsulate animal cells in chitosan microbeads using thermosensitive gel formulations without any chemical modification and cross-linker. The process consists of a water-in-oil emulsion where the aqueous phase droplets contain cells (L929 fibroblasts or human mesenchymal stromal cells), chitosan acidic solution and gelling agents (sodium hydrogen carbonate and phosphate buffer or beta-glycerophosphate). The oil temperature is maintained at 37 °C, allowing rapid physical gelation of the microbeads. Alginate beads prepared with the same method were used as a control. Microbeads with a diameter of 300-450 µm were successfully produced. Chitosan and alginate (2% w/v) microbeads presented similar rigidity in compression, but chitosan microbeads endured >80% strain without rupture, while alginate microbeads presented fragile breakage at <50% strain. High cell viability and metabolic activity were observed after up to 7 days in culture for encapsulated cells. Mesenchymal stromal cells encapsulated in chitosan microbeads released higher amounts of the vascular endothelial growth factor after 24 h compared to the cells encapsulated in manually cast macrogels. Moreover, microbeads were injectable through 23G needles without significant deformation or rupture. The emulsion-generated chitosan microbeads are a promising delivery vehicle for therapeutic cells because of their cytocompatibility, biodegradation, mechanical strength, and injectability. Clinical-scale encapsulation of therapeutic cells such as mesenchymal stromal cells in chitosan microbeads can readily be achieved using this simple and scalable emulsion-based process.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Quitosana , Microesferas , Alginatos , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular
2.
Biotechnol Prog ; 35(6): e2851, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31131558

RESUMO

In this study, we developed a high-throughput microchannel emulsification process to encapsulate pancreatic beta cells in monodisperse alginate beads. The process builds on a stirred emulsification and internal gelation method previously adapted to pancreatic cell encapsulation. Alginate bead production was achieved by flowing a 0.5-2.5% alginate solution with cells and CaCO3 across a 1-mm thick polytetrafluoroethylene plate with 700 × 200 µm rectangular straight-through channels. Alginate beads ranging from 1.5-3 mm in diameter were obtained at production rates exceeding 140 mL/hr per microchannel. Compared to the stirred emulsification process, the microchannel emulsification beads had a narrower size distribution and demonstrated enhanced compressive burst strength. Both microchannel and stirred emulsification beads exhibited homogeneous profiles of 0.7% alginate concentration using an initial alginate solution concentration of 1.5%. Encapsulated beta cell viability of 89 ± 2% based on live/dead staining was achieved by minimizing the bead residence time in the acidified organic phase fluid. Microchannel emulsification is a promising method for clinical-scale pancreatic beta cell encapsulation as well as other applications in the pharmaceutical, food, and cosmetic industries.


Assuntos
Encapsulamento de Células/métodos , Emulsões/química , Células Secretoras de Insulina/citologia , Alginatos , Animais , Sobrevivência Celular , Células Cultivadas , Células Secretoras de Insulina/fisiologia , Camundongos , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA