Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850958

RESUMO

In this paper, a novel liquid level sensing system is proposed to enhance the capacity of the sensing system, as well as reduce the cost and increase the sensing accuracy. The proposed sensing system can monitor the liquid level of several points at the same time in the sensing unit. Additionally, for cost efficiency, the proposed system employs only one sensor at each spot and all the sensors are multiplexed. In multiplexed systems, when changing the liquid level inside the container, the float position is changed and leads to an overlap or cross-talk between two sensors. To solve this overlap problem and to accurately predict the liquid level of each container, we proposed a deep neural network (DNN) approach to properly identify the water level. The performance of the proposed DNN model is evaluated via two different scenarios and the result proves that the proposed DNN model can accurately predict the liquid level of each point. Furthermore, when comparing the DNN model with the conventional machine learning schemes, including random forest (RF) and support vector machines (SVM), the DNN model exhibits the best performance.

2.
Biomed Eng Online ; 17(Suppl 2): 157, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30396347

RESUMO

BACKGROUND: Pressure sensors have been used for sleeping posture detection, which meet privacy requirements. Most of the existing techniques for sleeping posture recognition used force-sensitive resistor (FSR) sensors. However, lower limbs cannot be recognized accurately unless thousands of sensors are deployed on the bedsheet. METHOD: We designed a sleeping posture recognition scheme in which FSR sensors were deployed on the upper part of the bedsheet to record the pressure distribution of the upper body. In addition, an infrared array sensor was deployed to collect data for the lower body. Posture recognition was performed using a fuzzy c-means clustering algorithm. Six types of sleeping body posture were recognized from the combination of the upper and lower body postures. RESULTS: The experimental results showed that the proposed method achieved an accuracy of above 88%. Moreover, the proposed scheme is cost-efficient and easy to deploy. CONCLUSIONS: The proposed sleeping posture recognition system can be used for pressure ulcer prevention and sleep quality assessment. Compared to wearable sensors and cameras, FSR sensors and infrared array sensors are unobstructed and meet privacy requirements. Moreover, the proposed method provides a cost-effective solution for the recognition of sleeping posture.


Assuntos
Lógica Fuzzy , Monitorização Ambulatorial/instrumentação , Postura , Sono/fisiologia , Análise por Conglomerados , Humanos , Pressão , Processamento de Sinais Assistido por Computador
3.
Technol Health Care ; 24 Suppl 1: S307-12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26444814

RESUMO

This paper proposes body posture recognition and turning recording system for assisting the care of bed bound patients in nursing homes. The system continuously detects the patient's body posture and records the length of time for each body posture. If the patient remains in the same body posture long enough to develop pressure ulcers, the system notifies caregivers to change the patient's body posture. The objective of recording is to provide the log of body turning for querying of patients' family members. In order to accurately detect patient's body posture, we developed a novel pressure sensing pad which contains force sensing resistor sensors. Based on the proposed pressure sensing pad, we developed a bed posture recognition module which includes a bed posture recognition algorithm. The algorithm is based on fuzzy theory. The body posture recognition algorithm can detect the patient's bed posture whether it is right lateral decubitus, left lateral decubitus, or supine. The detected information of patient's body posture can be then transmitted to the server of healthcare center by the communication module to perform the functions of recording and notification. Experimental results showed that the average posture recognition accuracy for our proposed module is 92%.


Assuntos
Lógica Fuzzy , Casas de Saúde/organização & administração , Postura , Úlcera por Pressão/prevenção & controle , Tecnologia de Sensoriamento Remoto/instrumentação , Tecnologia de Sensoriamento Remoto/métodos , Algoritmos , Humanos , Pressão , Design de Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA