RESUMO
The importance of organoselenium compounds has been increasing in synthetic chemistry. These reagents are well-known as electrophiles and nucleophiles in many organic transformations, and in recent years, their functionality as catalysts has also been largely explored. The interest in organoselenium-based catalysts is due to their high efficacy, mild reaction conditions, strong functional compatibility, and great selectivity. Allied to organoselenium catalysts, the use of inorganic and organic oxidants that act by regenerating the catalytic species for the reaction pathway is common. Here, we provide a comprehensive review of the last five years of organic transformations promoted by diorganyl diselenide as a selenium-based catalyst. This report is divided into four sections: (1) cyclisation reactions, (2) addition reactions and oxidative functionalisation, (3) oxidation and reduction reactions, and (4) reactions involving phosphorus-containing starting materials.
RESUMO
Depression is a multifactorial and heterogeneous disease with several neurobiological mechanisms underlying its pathophysiology, including dysfunctional glutamatergic neurotransmission, which makes the exploration of the glutamate pathway an interesting strategy for developing novel rapid-acting antidepressant treatments. In the present study, we aimed to evaluate the possible glutamatergic pathway relation in the antidepressant-like action of 2-phenyl-3-(phenylselanyl)benzofuran (SeBZF1) in Swiss mice employing the tail suspension test (TST). Male Swiss mice received drugs targeting glutamate receptors before acute SeBZF1 administration at effective (50 mg/kg) or subeffective (1 mg/kg) doses by intragastric route (ig). TST and the open-field test (OFT) were employed in all behavioral experiments. The pretreatment of mice with N-methyl-D-aspartate (NMDA) (0.1 pmol/site, intracerebroventricular, icv, a selective agonist of the NMDA receptors), D-serine (30 µg/site, icv, a co-agonist at the NMDA receptor), arcaine (1 mg/kg, intraperitoneal, ip, an antagonist of the polyamine-binding site at the NMDA receptor), and 6,7-dinitroquinoxaline-2,3-dione (DNQX) (2,5 µg/site, icv, an antagonist of the AMPA/kainate type of glutamate receptors) inhibited the antidepressant-like effects of SeBZF1 (50 mg/kg, ig) in the TST. Coadministration of a subeffective dose of SeBZF1 with low doses of MK-801 (0.001 mg/kg, ip, a non-competitive NMDA receptor antagonist) or ketamine (0.1 mg/kg, ip, a non-selective antagonist of the NMDA receptors) produced significant antidepressant-like effects (synergistic action). These findings suggest the involvement of the glutamatergic system, probably through modulation of ionotropic glutamate receptors, in the antidepressant-like action of SeBZF1 in mice and contribute to a better understanding of the mechanisms underlying its pharmacological effects.
Assuntos
Benzofuranos , Ketamina , Masculino , Camundongos , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Receptores de N-Metil-D-Aspartato , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ketamina/farmacologia , Benzofuranos/farmacologia , Elevação dos Membros PosterioresRESUMO
The present study evaluated the protective effect of 1-(7-chloroquinolin-4-yl)-5-methyl-N-phenyl-1H-1,2,3-triazole-4-carboxamide (QTCA-1) on seizure severity, oxidative stress, and memory disorder in a pentylenetetrazole (PTZ)-kindling model in mice. Male Swiss mice were treated with QTCA-1 (10 mg/kg, intragastrically (i.g.)) or phenobarbital (PHEN) (10 mg/kg; i.g.), 30 min before the injection of PTZ (35 mg/kg, intraperitoneally (i.p.)). Treatments with QCTA-1 or PHEN and PTZ were performed once every 48 h (on the 1st, 3rd, 5th, 7th, 9th and 11th days). After each PTZ injection, the animals were observed for 30 min to assess the stage of seizure intensity. Behavioral parameters were evaluated from the 12th day until the 16th day of the experimental protocol. On the 16th day, mice were euthanized, and the cerebral cortex and hippocampus of mice were removed to determine the thiobarbituric acid reactive species (TBARS) and reactive species (RS) levels, and superoxide dismutase (SOD), Na+/K+-ATPase and acetylcholinesterase (AChE) activities. Our results demonstrated that QTCA-1 significantly decreased the seizure stage score in PTZ-kindled mice. QCTA-1 protected against memory impairment induced by PTZ. QTCA-1 normalized oxidative stress and Na+/K+-ATPase activity in the cerebral structures of PTZ-kindled mice. The effect of QTCA-1 treatment was similar to the positive control used in this study (PHEN). AChE activity did not change in the cerebral structures in PTZ- kindling mice. In conclusion, QCTA-1 may be a promising tool for the treatment of epileptogenesis and epilepsy-associated comorbidity (memory impairment). QCTA-1 to prevent these alterations may involve the reduction of oxidative stress and normalization of Na+/K+-ATPase activity.