Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Alzheimers Res Ther ; 16(1): 223, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402637

RESUMO

BACKGROUND: Misfolding and aggregation of amyloid ß (Aß), along with neurofibrillary tangles consisting of aggregated Tau species, are pathological hallmarks of Alzheimer's disease (AD) onset and progression. In this study, we hypothesized the clearance of Aß aggregates from the brain and body into the gut. METHODS: To investigate this, we used surface-based fluorescence intensity distribution analysis (sFIDA) to determine the Aß aggregate concentrations in feces from 26 AD patients and 31 healthy controls (HC). RESULTS: Aß aggregates were detectable in human feces and their concentrations were elevated in AD patients compared to HC (specificity 90.3%, sensitivity 53.8%). CONCLUSION: Thus, fecal Aß aggregates constitute a non-invasive biomarker candidate for diagnosing AD. Whether digestion-resistant Aß aggregates in feces are secreted via the liver and bile or directly from the enteric neuronal system remains to be elucidated.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Fezes , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Fezes/química , Feminino , Masculino , Idoso , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Estudo de Prova de Conceito , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Agregados Proteicos
2.
Alzheimers Dement (Amst) ; 16(2): e12589, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38666085

RESUMO

INTRODUCTION: Soluble amyloid beta (Aß) oligomers have been suggested as initiating Aß related neuropathologic change in Alzheimer's disease (AD) but their quantitative distribution and chronological sequence within the AD continuum remain unclear. METHODS: A total of 526 participants in early clinical stages of AD and controls from a longitudinal cohort were neurobiologically classified for amyloid and tau pathology applying the AT(N) system. Aß and tau oligomers in the quantified cerebrospinal fluid (CSF) were measured using surface-based fluorescence intensity distribution analysis (sFIDA) technology. RESULTS: Across groups, highest Aß oligomer levels were found in A+ with subjective cognitive decline and mild cognitive impairment. Aß oligomers were significantly higher in A+T- compared to A-T- and A+T+. APOE Îµ4 allele carriers showed significantly higher Aß oligomer levels. No differences in tau oligomers were detected. DISCUSSION: The accumulation of Aß oligomers in the CSF peaks early within the AD continuum, preceding tau pathology. Disease-modifying treatments targeting Aß oligomers might have the highest therapeutic effect in these disease stages. Highlights: Using surface-based fluorescence intensity distribution analysis (sFIDA) technology, we quantified Aß oligomers in cerebrospinal fluid (CSF) samples of the DZNE-Longitudinal Cognitive Impairment and Dementia (DELCODE) cohortAß oligomers were significantly elevated in mild cognitive impairment (MCI)Amyloid-positive subjects in the subjective cognitive decline (SCD) group increased compared to the amyloid-negative control groupInterestingly, levels of Aß oligomers decrease at advanced stages of the disease (A+T+), which might be explained by altered clearing mechanisms.

3.
Heliyon ; 9(8): e18443, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37609390

RESUMO

Disease-modifying therapies to treat Alzheimer's disease (AD) are of fundamental interest for aging humans, societies, and health care systems. Predictable disease progression in transgenic AD models favors preclinical studies employing a preventive study design with an early pre-symptomatic treatment start, instead of assessing a truly curative approach with treatment starting after diagnosed disease onset. The aim of this study was to investigate the pharmacokinetic profile and efficacy of RD2 to enhance short-term memory and cognition in cognitively impaired aged Beagle dogs - a non-transgenic model of truly sporadic AD. RD2 has previously demonstrated pharmacodynamic efficacy in three different transgenic AD mouse models in three different laboratories. Here, we demonstrate that oral treatment with RD2 significantly reduced cognitive deficits in cognitively impaired aged Beagle dogs even beyond the treatment end, which suggests in combination with the treatment dependent CSF tau oligomer decrease a disease-modifying effect of RD2 treatment.

4.
PLoS One ; 18(8): e0288138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603556

RESUMO

The primary function of virus proteases is the proteolytic processing of the viral polyprotein. These enzymes can also cleave host cell proteins, which is important for viral pathogenicity, modulation of cellular processes, viral replication, the defeat of antiviral responses and modulation of the immune response. It is known that COVID-19 can influence multiple tissues or organs and that infection can damage the functionality of the brain in multiple ways. After COVID-19 infections, amyloid-ß, neurogranin, tau and phosphorylated tau were detected extracellularly, implicating possible neurodegenerative processes. The present study describes the possible induction of tau aggregation by the SARS-CoV-2 3CL protease (3CLpro) possibly relevant in neuropathology. Further investigations demonstrated that tau was proteolytically cleaved by the viral protease 3CL and, consequently, generated aggregates. However, more evidence is needed to confirm that COVID-19 is able to trigger neurodegenerative diseases.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Agregados Proteicos , Proteínas tau , Humanos , Proteases 3C de Coronavírus/metabolismo , Endopeptidases , Peptídeo Hidrolases , SARS-CoV-2 , Proteínas tau/metabolismo
5.
Diagnostics (Basel) ; 13(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37238187

RESUMO

Protein misfolding and aggregation are pathological hallmarks of various neurodegenerative diseases. In Alzheimer's disease (AD), soluble and toxic amyloid-ß (Aß) oligomers are biomarker candidates for diagnostics and drug development. However, accurate quantification of Aß oligomers in bodily fluids is challenging because extreme sensitivity and specificity are required. We previously introduced surface-based fluorescence intensity distribution analysis (sFIDA) with single-particle sensitivity. In this report, a preparation protocol for a synthetic Aß oligomer sample was developed. This sample was used for internal quality control (IQC) to improve standardization, quality assurance, and routine application of oligomer-based diagnostic methods. We established an aggregation protocol for Aß1-42, characterized the oligomers by atomic force microscopy (AFM), and assessed their application in sFIDA. Globular-shaped oligomers with a median size of 2.67 nm were detected by AFM, and sFIDA analysis of the Aß1-42 oligomers yielded a femtomolar detection limit with high assay selectivity and dilution linearity over 5 log units. Lastly, we implemented a Shewhart chart for monitoring IQC performance over time, which is another important step toward quality assurance of oligomer-based diagnostic methods.

6.
NPJ Parkinsons Dis ; 9(1): 14, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732520

RESUMO

Misfolded and aggregated α-synuclein is a neuropathological hallmark of Parkinson's disease (PD). Thus, α-synuclein aggregates are regarded as a biomarker for the development of diagnostic assays. Quantification of α-synuclein aggregates in body fluids is challenging, and requires highly sensitive and specific assays. Recent studies suggest that α-synuclein aggregates may be shed into stool. We used surface-based fluorescence intensity distribution analysis (sFIDA) to detect and quantify single particles of α-synuclein aggregates in stool of 94 PD patients, 72 isolated rapid eye movement sleep behavior disorder (iRBD) patients, and 51 healthy controls. We measured significantly elevated concentrations of α-synuclein aggregates in stool of iRBD patients versus those of controls (p = 0.024) or PD patients (p < 0.001). Our results show that α-synuclein aggregates are excreted in stool and can be measured using the sFIDA assay, which could support the diagnosis of prodromal synucleinopathies.

7.
NPJ Parkinsons Dis ; 8(1): 68, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655068

RESUMO

The pathological hallmark of neurodegenerative diseases is the formation of toxic oligomers by proteins such as alpha-synuclein (aSyn) or microtubule-associated protein tau (Tau). Consequently, such oligomers are promising biomarker candidates for diagnostics as well as drug development. However, measuring oligomers and other aggregates in human biofluids is still challenging as extreme sensitivity and specificity are required. We previously developed surface-based fluorescence intensity distribution analysis (sFIDA) featuring single-particle sensitivity and absolute specificity for aggregates. In this work, we measured aSyn and Tau aggregate concentrations of 237 cerebrospinal fluid (CSF) samples from five cohorts: Parkinson's disease (PD), dementia with Lewy bodies (DLB), Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and a neurologically-normal control group. aSyn aggregate concentration discriminates PD and DLB patients from normal controls (sensitivity 73%, specificity 65%, area under the receiver operating curve (AUC) 0.68). Tau aggregates were significantly elevated in PSP patients compared to all other groups (sensitivity 87%, specificity 70%, AUC 0.76). Further, we found a tight correlation between aSyn and Tau aggregate titers among all patient cohorts (Pearson coefficient of correlation r = 0.81). Our results demonstrate that aSyn and Tau aggregate concentrations measured by sFIDA differentiate neurodegenerative disease diagnostic groups. Moreover, sFIDA-based Tau aggregate measurements might be particularly useful in distinguishing PSP from other parkinsonisms. Finally, our findings suggest that sFIDA can improve pre-clinical and clinical studies by identifying those individuals that will most likely respond to compounds designed to eliminate specific oligomers or to prevent their formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA