Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cureus ; 16(4): e59302, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38813296

RESUMO

Healthcare costs in the United States (US) exceed those of comparable nations without yielding better outcomes. Factors contributing to this include lack of cost transparency, limited outpatient resources due to primary care provider shortages, and high patient volumes, where patients are not educated on differentials and the stepwise process of workup. Addressing these issues could curb unnecessary hospitalizations and expenses. A 31-year-old woman with hypertension, alcohol use, anemia, and obesity experienced paresthesias in September 2022. At her first visit, the exam was consistent with decreased bilateral plantar sensation; however, there was no weakness or gait abnormality. This was not consistent with a focal neurologic distribution. Despite multiple ER visits, her condition persisted. Initial evaluations included potassium replacement ($80 for labs, $13 for tablet), nonacute head CT ($1500), and benign CT L-spine ($2500). Subsequent hospitalization led to brain MRI/MRA head/neck ($6700) and serum workup ($240), revealing deficiencies in vitamin D, folate, and B12. Treatment involved prednisone taper ($30) and supplemental vitamins ($35), with lifestyle recommendations ($0). After evaluating CompuNet lab costs and equivalent market imaging prices, potential savings exceeding $15,000 were identified through more focused and cost-conscious initial testing including vitamin studies and outpatient management, reducing hospitalizations and imaging expenses. Rising healthcare costs in the US are driven by various factors, yet fail to correlate with improved outcomes. Our case argues that enhancing access to primary care, promoting cost transparency, and educating patients on healthcare decisions are crucial for mitigating excessive spending.

2.
Malar J ; 20(1): 394, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34627242

RESUMO

BACKGROUND: Rapid diagnostic tests (RDT) are commonly used for the diagnosis of malaria caused by Plasmodium falciparum. However, false negative results of RDT caused by genetic variation of P. falciparum histidine-rich protein 2 and 3 genes (pfhrp2/3) threaten existing malaria case management and control efforts. The main objective of this study was to investigate the genetic variations of the pfhrp2/3 genes. METHODS: A cross-sectional study was conducted from malaria symptomatic individuals in 2018 in Assosa zone, Ethiopia. Finger-prick blood samples were collected for RDT and microscopic examination of thick and thin blood films. Dried blood spots (DBS) were used for genomic parasite DNA extraction and molecular detection. Amplification of parasite DNA was made by quantitative PCR. DNA amplicons of pfhrp2/3 were purified and sequenced. RESULTS: The PfHRP2 amino acid repeat type isolates were less conserved compared to the PfHRP3 repeat type. Eleven and eight previously characterized PfHRP2 and PfHRP3 amino acid repeat types were identified, respectively. Type 1, 4 and 7 repeats were shared by PfHRP2 and PfHRP3 proteins. Type 2 repeats were found only in PfHRP2, while types 16 and 17 were found only in PfHRP3 with a high frequency in all isolates. 18 novel repeat types were found in PfHRP2 and 13 novel repeat types were found in PfHRP3 in single or multiple copies per isolate. The positivity rate for PfHRP2 RDT was high, 82.9% in PfHRP2 and 84.3% in PfHRP3 sequence isolates at parasitaemia levels > 250 parasites/µl. Using the Baker model, 100% of the isolates in group A (If product of types 2 × type 7 repeats ≥ 100) and 73.7% of the isolates in group B (If product of types 2 × type 7 repeats 50-99) were predicted to be detected by PfHRP2 RDT at parasitaemia level > 250 parasite/µl. CONCLUSION: The findings of this study indicate the presence of different PfHRP2 and PfHRP3 amino acid repeat including novel repeats in P. falciparum from Ethiopia. These results indicate that there is a need to closely monitor the performance of PfHRP2 RDT associated with the genetic variation of the pfhrp2 and pfhrp3 gene in P. falciparum isolates at the country-wide level.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum/diagnóstico , Plasmodium falciparum/química , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Antígenos de Protozoários/química , Etiópia , Variação Genética , Humanos , Plasmodium falciparum/genética , Proteínas de Protozoários/química , Fatores de Tempo
3.
Malar J ; 20(1): 109, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622309

RESUMO

BACKGROUND: Rapid diagnostic tests (RDTs) targeting histidine rich protein 2(HRP2) are widely used for diagnosis of Plasmodium falciparum infections. Besides PfHRP2, the PfHRP3 antigen contributes to the detection of P. falciparum infections in PfHRP2 RDTs. However, the performance HRP2-based RDT is affected by pfhrp2/3 gene deletions resulting in false-negative test results. The objective of this study was to determine the presence and prevalence of pfhrp2/3 gene deletions including the respective flanking regions among symptomatic patients in Assosa zone, Northwest Ethiopia. METHODS: A health-facility based cross-sectional study was conducted in febrile patients seeking a malaria diagnosis in 2018. Blood samples were collected by finger-prick for microscopic examination of blood smears, malaria RDT, and molecular analysis using dried blood spots (DBS) prepared on Whatman filter paper. A total of 218 P. falciparum positive samples confirmed by quantitative PCR were included for molecular assay of pfhrp2/3 target gene. RESULTS: Of 218 P. falciparum positive samples, exon 2 deletions were observed in 17.9% of pfhrp2 gene and in 9.2% of pfhrp3 gene. A high proportion of deletions in short segments of pfhrp2 exon1-2 (50%) was also detected while the deletions of the pfhrp3 exon1-2 gene were 4.1%. The deletions were extended to the downstream and upstream of the flanking regions in pfhrp2/3 gene (above 30%). Of eighty-six PfHRP2 RDT negative samples, thirty-six lacked pfhrp2 exon 2. Five PfHRP2 RDT negative samples had double deletions in pfhrp2 exon 2 and pfhrp3 exon2. Of these double deletions, only two of the samples with a parasite density above 2000 parasite/µl were positive by the microscopy. Three samples with intact pfhrp3 exon2 in the pfhrp2 exon2 deleted parasite isolates were found to be positive by PfHRP2 RDT and microscopy with a parasite density above 10,000/µl. CONCLUSION: This study confirms the presence of deletions of pfhrp2/3 gene including the flanking regions. Pfhrp2/3 gene deletions results in false-negative results undoubtedly affect the current malaria control and elimination effort in the country. However, further countrywide investigations are required to determine the magnitude of pfhrp2/3 gene deletions and its consequences on routine malaria diagnosis.


Assuntos
Antígenos de Protozoários/genética , Testes Diagnósticos de Rotina/métodos , Deleção de Genes , Malária Falciparum/epidemiologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Estudos Transversais , Etiópia/epidemiologia , Feminino , Humanos , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Prevalência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA