Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acc Chem Res ; 57(16): 2234-2244, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39115809

RESUMO

ConspectusThe origin of the single chirality of the chemical building blocks of life remains an intriguing topic of research, even after decades of experimental and theoretical work proposing processes that may break symmetry and induce chiral amplification, a term that may be defined as the enhancement of enantiomeric excess starting from prochiral substrates or from a racemic mixture or a small imbalance between enantiomers. Studies aimed at understanding prebiotically plausible pathways to these molecules have often neglected the issue of chirality, with a focus on the stereochemical direction of these reactions generally being pursued after reaction discovery. Our work has explored how the stereochemical outcome for the synthesis of amino acids and sugars might be guided to rationalize the origin of biological homochirality. The mechanistic interconnection between enantioenrichment in these two groups of molecules provides insights concerning the handedness extant in modern biology. In five separate examples involving the synthesis of life's building blocks, including sugars, RNA precursors, amino acids, and peptides, kinetic resolution emerges as a key protocol for enantioenrichment from racemic molecules directed by chiral source molecules. Several of these examples involve means not only for chiral amplification but also symmetry breaking and chirality transfer across a range of racemic monomer molecules. Several important implications emerge from these studies: one, kinetic resolution of the primordial chiral sugar, glyceraldehyde, plays a key role in a number of different prebiotically plausible reactions; two, the emergence of homochirality in sugars and amino acids is inherently intertwined, with clear synergy between the biological hand of each molecule class; three, the origin story for the homochirality of enzymes and modern metabolism points toward kinetic resolution of racemic amino acids in networks that later evolved to include sophisticated and complete catalytic and co-catalytic cycles; four, a preference for heterochiral ligation forming product molecules that cannot lead to biologically competent polymers can in fact be a driving force for a route to homochiral polymer chains; and five, enantioenrichment in complex mixtures need not be addressed one compound at a time, because kinetic resolution induces symmetry breaking and chirality transfer that may lead to general protocols rather than specific cases tailored to each individual molecule. Such chirality transfer mechanisms perhaps presage strategies utilized in modern biology.Our latest work extends the study of monomer enantioenrichment to the ligation of these molecules into the extended homochiral chains leading to the complex polymers of modern biology. A central theme in all of these reactions is the key role that kinetic resolution of a racemic mixture of amino acids or sugars plays in enabling enantioenrichment under prebiotically plausible conditions. This work has uncovered important trends in symmetry breaking, chirality transfer, and chiral amplification. Kinetic resolution of racemic mixtures emerges as a general solution for chiral amplification in prebiotic chemistry, leading to the single chirality of complex biological molecules and genetic polymers.


Assuntos
Aminoácidos , Estereoisomerismo , Cinética , Aminoácidos/química , Peptídeos/química , Peptídeos/síntese química , Prebióticos , Origem da Vida , Açúcares/química , RNA/química
3.
Proc Natl Acad Sci U S A ; 121(7): e2315447121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38315856

RESUMO

The kinetic resolution of racemic amino acids mediated by dipeptides and pyridoxal provides a prebiotically plausible route to enantioenriched proteinogenic amino acids. The enzymatic transamination cycles that are key to modern biochemical formation of enantiopure amino acids may have evolved from this half of the reversible reaction couple. Kinetic resolution of racemic precursors emerges as a general route to enantioenrichment under prebiotic conditions.


Assuntos
Aminoácidos , Peptídeos , Aminoácidos/química , Peptídeos/química
4.
Nature ; 626(8001): 1019-1024, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38418914

RESUMO

The single chirality of biological molecules is a signature of life. Yet, rationalizing how single chirality emerged remains a challenging goal1. Research has commonly focused on initial symmetry breaking and subsequent enantioenrichment of monomer building blocks-sugars and amino acids-that compose the genetic polymers RNA and DNA as well as peptides. If these building blocks are only partially enantioenriched, however, stalling of chain growth may occur, whimsically termed in the case of nucleic acids as "the problem of original syn"2. Here, in studying a new prebiotically plausible route to proteinogenic peptides3-5, we discovered that the reaction favours heterochiral ligation (that is, the ligation of L monomers with D monomers). Although this finding seems problematic for the prebiotic emergence of homochiral L-peptides, we demonstrate, paradoxically, that this heterochiral preference provides a mechanism for enantioenrichment in homochiral chains. Symmetry breaking, chiral amplification and chirality transfer processes occur for all reactants and products in multicomponent competitive reactions even when only one of the molecules in the complex mixture exhibits an imbalance in enantiomer concentrations (non-racemic). Solubility considerations rationalize further chemical purification and enhanced chiral amplification. Experimental data and kinetic modelling support this prebiotically plausible mechanism for the emergence of homochiral biological polymers.


Assuntos
Biopolímeros , Evolução Química , Peptídeos , Proteínas , Estereoisomerismo , Biopolímeros/química , Ácidos Nucleicos/síntese química , Ácidos Nucleicos/química , Origem da Vida , Peptídeos/química , Proteínas/síntese química , Proteínas/química , Solubilidade
5.
ACS Catal ; 12(2): 1150-1160, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36386561

RESUMO

A highly efficient and enantioselective asymmetric hydrogenation catalyzed by Ru-DTBM-segphos is reported for a broad range of pyridine-pyrroline tri-substituted alkenes. Kinetic, spectroscopic, and computational studies suggest that addition of H2 is rate-determining and that alkene insertion is the enantio-determining step. These studies also reveal an intriguing Ru-catalyzed H/D exchange process that is facilitated by the substrate at room temperature and low pressure where hydrogenation activity is suppressed. These studies lead to a mechanistic proposal that further defines the roles of hydrogen gas, Ru-H species, and protic solvents in this catalytic system.

6.
ACS Catal ; 12(10): 5776-5785, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35633899

RESUMO

Observations of nonlinear effects of catalyst enantiopurity on product enantiomeric excess in asymmetric catalysis are often used to infer that more than one catalyst species is involved in one or more reaction steps. We demonstrate here, however, that in the case of asymmetric catalytic cascade reactions, a nonlinear effect may be observed in the absence of any higher order catalyst species or any reaction step involving two catalyst species. We illustrate this concept with an example from a recent report of an organocatalytic enantioselective [10 + 2] stepwise cyclization reaction. The disruption of pre-equilibria (Curtin-Hammett equilibrium) in reversible steps occurring prior to the final irreversible product formation step can result in an alteration of the final product ee from what would be expected based on a linear relationship with the enantiopure catalyst. The treatment accounts for either positive or negative nonlinear effects in systems over a wide range of conditions including "major-minor" kinetics or the more conventional "lock-and-key" kinetics. The mechanistic scenario proposed here may apply generally to other cascade reaction systems exhibiting similar kinetic features and should be considered as a viable alternative model whenever a nonlinear effect is observed in a cascade sequence of reactions.

7.
Nature ; 605(7911): 687-695, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35614246

RESUMO

The study and application of transition metal hydrides (TMHs) has been an active area of chemical research since the early 1960s1, for energy storage, through the reduction of protons to generate hydrogen2,3, and for organic synthesis, for the functionalization of unsaturated C-C, C-O and C-N bonds4,5. In the former instance, electrochemical means for driving such reactivity has been common place since the 1950s6 but the use of stoichiometric exogenous organic- and metal-based reductants to harness the power of TMHs in synthetic chemistry remains the norm. In particular, cobalt-based TMHs have found widespread use for the derivatization of olefins and alkynes in complex molecule construction, often by a net hydrogen atom transfer (HAT)7. Here we show how an electrocatalytic approach inspired by decades of energy storage research can be made use of in the context of modern organic synthesis. This strategy not only offers benefits in terms of sustainability and efficiency but also enables enhanced chemoselectivity and distinct, tunable reactivity. Ten different reaction manifolds across dozens of substrates are exemplified, along with detailed mechanistic insights into this scalable electrochemical entry into Co-H generation that takes place through a low-valent intermediate.

9.
ACS Catal ; 12(10): 5961-5969, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37727697

RESUMO

The mechanism of asymmetric hydrogenation of 2-pyridyl alkenes catalyzed by chiral Rh-phosphine complexes at ambient temperature is examined using kinetic, spectroscopic, and computational tools. The reaction proceeds with reversible substrate binding followed by rate-determining addition of hydrogen. Substrate binding occurs only through the pyridine nitrogen in contrast to other substrate classes exhibiting stronger substrate direction. The lack of influence of hydrogen pressure on the product enantiomeric excess suggests that a pre-equilibrium in substrate binding is maintained across the pressure range investigated. An off-cycle Rh-hydride species is implicated in the mild catalyst deactivation observed. In contrast to Ru-phosphine-catalyzed reactions of the same substrate class, the stereochemical outcome in this system correlates generally with the relative stability of the E and Z rotamers of the substrate.

10.
ACS Catal ; 12(21): 13400-13410, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37274060

RESUMO

Detailed kinetic studies on the functionalization of unactivated hydrocarbon sp3 C-H bonds by dirhodium-catalyzed reaction of aryldiazoacetates revealed that the C-H functionalization step is rate-determining. The efficiency of this step was increased by using the hydrocarbon as solvent and using donor/acceptor carbenes with an electron-withdrawing substituent on the aryl donor group. The optimum catalyst for these reactions is the tetraphenylphthalimido derivative Rh2(R-TPPTTL)4 and a further beneficial refinement was obtained by using N,N'-dicyclohexylcarbodiimide as an additive. Under the optimum conditions with a catalyst loading of 0.001 mol %, effective enantioselective C-H functionalization (66-97% yield, 83-97% ee) was achieved of cycloalkanes with a range of aryldiazoacetates as long as the aryldiazoacetate was not to sterically demanding. The reaction with cyclohexane using a catalyst loading of 0.0005 mol % could be recharged twice with additional aryldiazoacetate, resulting in an overall dirhodium catalyst turnover number of 580,000.

11.
Science ; 373(6560): 1265-1270, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516793

RESUMO

The promise of gene-based therapies is being realized at an accelerated pace, with more than 155 active clinical trials and multiple U.S. Food and Drug Administration approvals for therapeutic oligonucleotides, by far most of which contain modified phosphate linkages. These unnatural linkages have desirable biological and physical properties but are often accessed with difficulty using phosphoramidite chemistry. We report a flexible and efficient [P(V)]­based platform that can install a wide variety of phosphate linkages at will into oligonucleotides. This approach uses readily accessible reagents and can install not only stereodefined or racemic thiophosphates but any combination of (S, R or rac)­PS with native phosphodiester (PO2) and phosphorodithioate (PS2) linkages into DNA and other modified nucleotide polymers. This platform easily accesses this diversity under a standardized coupling protocol with sustainably prepared, stable P(V) reagents.


Assuntos
Oligonucleotídeos/síntese química
12.
ACS Catal ; 11(7): 4239-4246, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-34422450

RESUMO

Pd(II)-catalyzed E/Z isomerization of alkenes is a common process-yet its mechanism remains largely uncharacterized, particularly with non-conjugated alkenes. In this work, the mechanism of Pd(II)-catalyzed E/Z isomerization of unactivated olefins containing an aminoquinoline-based amide directing group is probed using in situ kinetic analysis, spectroscopic studies, kinetic modeling, and DFT calculations. The directing group allows for stabilization and monitoring of previously undetectable intermediates. Collectively, the data are consistent with isomerization occurring through a monometallic nucleopalladation mechanism.

13.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34404720

RESUMO

A simple electrochemically mediated method for the conversion of alkyl carboxylic acids to their borylated congeners is presented. This protocol features an undivided cell setup with inexpensive carbon-based electrodes and exhibits a broad substrate scope and scalability in both flow and batch reactors. The use of this method in challenging contexts is exemplified with a modular formal synthesis of jawsamycin, a natural product harboring five cyclopropane rings.


Assuntos
Ácidos Borônicos/química , Ácidos Carboxílicos/química , Técnicas Eletroquímicas/métodos , Eletrodos
14.
J Am Chem Soc ; 143(25): 9478-9488, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34128671

RESUMO

One of the most oft-employed methods for C-C bond formation involving the coupling of vinyl-halides with aldehydes catalyzed by Ni and Cr (Nozaki-Hiyama-Kishi, NHK) has been rendered more practical using an electroreductive manifold. Although early studies pointed to the feasibility of such a process, those precedents were never applied by others due to cumbersome setups and limited scope. Here we show that a carefully optimized electroreductive procedure can enable a more sustainable approach to NHK, even in an asymmetric fashion on highly complex medicinally relevant systems. The e-NHK can even enable non-canonical substrate classes, such as redox-active esters, to participate with low loadings of Cr when conventional chemical techniques fail. A combination of detailed kinetics, cyclic voltammetry, and in situ UV-vis spectroelectrochemistry of these processes illuminates the subtle features of this mechanistically intricate process.


Assuntos
Álcoois/síntese química , Aldeídos/química , Amidas/química , Catálise , Cromo/química , Técnicas Eletroquímicas/métodos , Hidrocarbonetos Bromados/química , Níquel/química , Estereoisomerismo
15.
Nat Chem ; 13(8): 786-791, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34112989

RESUMO

Homochiral membrane bilayers organize biological functions in all domains of life. The membrane's permeability-its key property-correlates with a molecule's lipophilicity, but the role of the membrane's rich and uniform stereochemistry as a permeability determinant is largely ignored in empirical and computational measurements. Here, we describe a new approach to measuring permeation using continuously generated microfluidic droplet interface bilayers (DIBs, generated at a rate of 480 per minute) and benchmark this system by monitoring fluorescent dye DIB permeation over time. Enantioselective permeation of alkyne-labelled amino acids (Ala, Val, Phe, Pro) and dipeptides through a chiral phospholipid bilayer was demonstrated using DIB transport measurements; the biological L enantiomers permeated faster than the D enantiomers (from 1.2-fold to 6-fold for Ala to Pro). Enantioselective permeation both poses a potentially unanticipated criterion for drug design and offers a kinetic mechanism for the abiotic emergence of homochirality via chiral transfer between sugars, amino acids and lipids.


Assuntos
Bicamadas Lipídicas/metabolismo , Alcinos/química , Alcinos/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Colesterol/química , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Bicamadas Lipídicas/química , Permeabilidade , Fosfatidilcolinas/química , Estereoisomerismo
16.
Chem Sci ; 12(18): 6350-6354, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-34084433

RESUMO

A prebiotically plausible route to enantioenriched glyceraldehyde is reported via a kinetic resolution mediated by peptides. The reaction proceeds via a selective reaction between the l-peptide and the l-sugar producing an Amadori rearrangement byproduct and leaving d-glyceraldehyde in excess. Solubility considerations in the synthesis of proline-valine (pro-val) peptides allow nearly enantiopure pro-val to be formed starting from racemic pro and nearly racemic (10%) ee val. (ee = enantiomeric excess = (|d - l|)/(d + l)) Thus enantioenrichment of glyceraldehyde is achieved in a system with minimal initial chiral bias. This work demonstrates synergy between amino acids and sugars in the emergence of biological homochirality.

17.
J Am Chem Soc ; 143(20): 7852-7858, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33979125

RESUMO

Enantioenriched amino acids are produced in a hydrolytic kinetic resolution of racemic aminonitriles mediated by chiral pentose sugars. Experimental kinetic and spectroscopic results combined with DFT computational studies and microkinetic modeling help to identify the nature of the intermediate species and provide insight into the stereoselectivity of their hydrolysis in the prebiotically relevant ribose-alanine system. These studies support a synergistic role for sugars and amino acids in the emergence of homochirality in biological molecules.


Assuntos
Alanina/síntese química , Ribose/química , Alanina/química , Teoria da Densidade Funcional , Estrutura Molecular , Estereoisomerismo
18.
J Org Chem ; 85(21): 13674-13679, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32991170

RESUMO

Mechanistic investigations uncover a novel role for 2-pyridone ligands and interrogate the origin of enantioselectivity in the (+)-norbornene-mediated Pd-catalyzed meta-C(aryl)-H functionalization of diarylmethylamines. Observations from kinetic analysis in concert with in situ 19F NMR monitoring allow us to propose that the pyridone ligand plays a role in enhancing the rate- and enantio-determining insertion of an arylpalladium species into a chiral norbornene derivative. The unprecedented features of 2-pyridone ligands in asymmetric 1,2 migratory insertion, and norbornene as a transient chiral mediator in relay chemistry, provide new insights into this ligand scaffold for future developments in stereoselective transition-metal-catalyzed C-H functionalization.

19.
J Am Chem Soc ; 142(8): 3873-3879, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32027134

RESUMO

The evolution of homochirality via attrition-enhanced deracemization (AED) of enantiomorphic solids is carried out using molecules that differ only in the isotopic composition of a phenyl group positioned remote from the chiral center. Enantioenrichment consistently favors the enantiomorph containing a deuterated phenyl group over the protio or 13C version, and the protio version is consistently favored over the 13C version. While these isotopic compounds exhibit identical crystal structures and solubilities, the trend in deracemization correlates with melting points. Understanding the origin of this isotope bias provides fundamental clues about overcoming stochastic behavior to direct the stereochemical outcome in attrition-enhanced deracemization processes. The energy required for breaking symmetry with chiral bias is compared for this near-equilibrium AED process and the far-from-equilibrium Soai autocatalytic reaction. Implications for the origin of biological homochirality are discussed.


Assuntos
Isótopos/química , Estrutura Molecular , Solubilidade , Estereoisomerismo
20.
Chem Rev ; 120(11): 4831-4847, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31797671

RESUMO

Autocatalytic models for the emergence of homochirality have been of interest for more than half a century. The sole experimental example of such an amplifying autocatalytic reaction is the Soai reaction. In this review, we trace the history of the theoretical models and the experimental work that led up to the discovery of the remarkable, singular Soai reaction. The experimental and computational studies that have helped to delineate the mechanism of this reaction are discussed in detail. Studies of both the concept of chiral symmetry breaking as well as the subsequent chiral amplification process are discussed. Particular attention is paid to flaws in some of the published models, and suggestions are offered for how such issues might be avoided in future work. The outlook in the search for a prebiotically plausible version of such an amplifying autocatalytic system is presented.


Assuntos
Evolução Química , Compostos Orgânicos/química , Catálise , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA