Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Qual ; 53(5): 577-588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39087255

RESUMO

The purpose of this study was to examine bacterial colonization of different types of microplastics through time in a freshwater ecosystem. Microplastics are persistent pollutants in aquatic ecosystems. Bacteria readily colonize microplastic surfaces and may contribute to their degradation, but the taxa involved, and their degradative abilities, differ based on factors such as microplastic chemistry, plastic age, and specific ecosystem types. Four different common types of newly manufactured microplastics, high-density polyethylene, low-density polyethylene, polypropylene, and polystyrene, were incubated for 7 weeks in a freshwater stream and sampled. Sample collection was timed to examine the development of early and late bacterial biofilm communities. Microplastics were analyzed for changes to buoyancy, weight, contact angles (an indicator of surface roughness), bacterial community composition, and the number of bacterial cells. Time was the only significant contributing factor in the development of bacterial biofilm communities on microplastic disks over the 7-week study. Notably, the Comamonadaceae were abundant early in the study and decreased in abundance with time, while the Methylococcaceae demonstrated the opposite trend. Different physicochemical properties among the various types of microplastics had only a minor effect on bacterial community compositions of biofilms growing on the microplastics. Additionally, the surfaces of all microplastic disks became rougher over time in the stream. Collectively, our results show that microplastic surfaces undergo surface modification and community succession as time progresses, regardless of microplastic type, in a freshwater stream ecosystem.


Assuntos
Bactérias , Microplásticos , Rios , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Rios/química , Rios/microbiologia , Bactérias/classificação , Biofilmes , Monitoramento Ambiental , Água Doce , Microbiologia da Água
2.
Ecol Evol ; 14(3): e10986, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38476701

RESUMO

Inclusion of edaphic conditions in biogeographical studies typically provides a better fit and deeper understanding of plant distributions. Increased reliance on soil data calls for easily accessible data layers providing continuous soil predictions worldwide. Although SoilGrids provides a potentially useful source of predicted soil data for biogeographic applications, its accuracy for estimating the soil characteristics experienced by individuals in small-scale populations is unclear. We used a biogeographic sampling approach to obtain soil samples from 212 sites across the midwestern and eastern United States, sampling only at sites where there was a population of one of the 22 species in Lobelia sect. Lobelia. We analyzed six physical and chemical characteristics in our samples and compared them with predicted values from SoilGrids. Across all sites and species, soil texture variables (clay, silt, sand) were better predicted by SoilGrids (R 2: .25-.46) than were soil chemistry variables (carbon and nitrogen, R 2 ≤ .01; pH, R 2: .19). While SoilGrids predictions rarely matched actual field values for any variable, we were able to recover qualitative patterns relating species means and population-level plant characteristics to soil texture and pH. Rank order of species mean values from SoilGrids and direct measures were much more consistent for soil texture (Spearman r S = .74-.84; all p < .0001) and pH (r S = .61, p = .002) than for carbon and nitrogen (p > .35). Within the species L. siphilitica, a significant association, known from field measurements, between soil texture and population sex ratios could be detected using SoilGrids data, but only with large numbers of sites. Our results suggest that modeled soil texture values can be used with caution in biogeographic applications, such as species distribution modeling, but that soil carbon and nitrogen contents are currently unreliable, at least in the region studied here.

3.
FEMS Microbiol Ecol ; 100(3)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38373845

RESUMO

Community assembly is influenced by environmental niche processes as well as stochastic processes that can be spatially dependent (e.g. dispersal limitation) or independent (e.g. priority effects). Here, we sampled senesced tree leaves as unit habitats to investigate fungal community assembly at two spatial scales: (i) small neighborhoods of overlapping leaves from differing tree species and (ii) forest stands of differing ecosystem types. Among forest stands, ecosystem type explained the most variation in community composition. Among adjacent leaves within stands, variability in fungal composition was surprisingly high. Leaf type was more important in stands with high soil fertility and dominated by differing tree mycorrhizal types (sugar maple vs. basswood or red oak), whereas distance decay was more important in oak-dominated forest stands with low soil fertility. Abundance of functional groups was explained by environmental factors, but predictors of taxonomic composition within differing functional groups were highly variable. These results suggest that fungal community assembly processes are clearest for functional group abundances and large spatial scales. Understanding fungal community assembly at smaller spatial scales will benefit from further study focusing on differences in drivers for different ecosystems and functional groups, as well as the importance of spatially independent factors such as priority effects.


Assuntos
Ecossistema , Micobioma , Microbiologia do Solo , Florestas , Árvores/microbiologia , Solo , Fungos/genética
4.
Environ Microbiol ; 25(12): 3639-3654, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37875338

RESUMO

In sediments, the bioavailability and toxicity of Ni are strongly influenced by its sorption to manganese (Mn) oxides, which largely originate from the redox metabolism of microbes. However, microbes are concurrently susceptible to the toxic effects of Ni, which establishes complex interactions between toxicity and redox processes. This study measured the effect of Ni on growth, pellicle biofilm formation and oxidation of the Mn-oxidizing bacteria Pseudomonas putida GB-1. In liquid media, Ni exposure decreased the intrinsic growth rate but allowed growth to the stationary phase in all intermediate treatments. Manganese oxidation was 67% less than control for bacteria exposed to 5 µM Ni and completely ceased in all treatments above 50 µM. Pellicle biofilm development decreased exponentially with Ni concentration (maximum 92% reduction) and was replaced by planktonic growth in higher Ni treatments. In solid media assays, growth was unaffected by Ni exposure, but Mn oxidation completely ceased in treatments above 10 µM of Ni. Our results show that sublethal Ni concentrations substantially alter Mn oxidation rates and pellicle biofilm development in P. putida GB-1, which has implications for toxic metal bioavailability to the entire benthic community and the environmental consequences of metal contamination.


Assuntos
Manganês , Pseudomonas putida , Manganês/toxicidade , Manganês/metabolismo , Pseudomonas putida/metabolismo , Níquel/toxicidade , Níquel/metabolismo , Oxirredução
5.
Environ Microbiol ; 24(12): 5809-5824, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36054483

RESUMO

Green roof soils are usually engineered for purposes other than urban biodiversity, which may impact their fungal communities, and in turn impact the health of plants in the urban ecosystem. We examined the drivers of fungal diversity and community composition in soil of green roofs and adjacent ground-level green spaces in three Midwestern USA cities-Chicago, Cleveland, and Minneapolis. Overall, fungal communities on green roofs were more diverse than ground-level green spaces and were correlated with plant cover (positively) and roof age (negatively) rather than abiotic soil properties. Fungal community composition was distinct between roof and ground environments, among cities, and between sampling sites, but green roofs and their immediately surrounding ground-level green space showed some similarity. This suggests dispersal limitation may result in geographic structuring at large spatial scales, but dispersal between roofs and their neighbouring sites may be occurring. Different fungal taxonomic and functional groups were better explained when roofs were classified either by depth (extensive or intensive) or functional intent of the roof design (i.e. stormwater/energy, biodiversity, or aesthetics/recreation). Our results demonstrate that green roofs are an important reservoir of fungal diversity in the urban landscape, which should be considered in future green roof design.


Assuntos
Ecossistema , Parques Recreativos , Biodiversidade , Cidades , Plantas , Solo
6.
New Phytol ; 236(6): 2358-2373, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36168143

RESUMO

Lignin is an important root chemical component that is widely used in biogeochemical models to predict root decomposition. Across ecological studies, lignin abundance has been characterized using both proximate and lignin-specific methods, without much understanding of their comparability. This uncertainty in estimating lignin limits our ability to comprehend the mechanisms regulating root decomposition and to integrate lignin data for large-scale syntheses. We compared five methods of estimating lignin abundance and composition in fine roots across 34 phylogenetically diverse tree species. We also assessed the feasibility of high-throughput techniques for fast-screening of root lignin. Although acid-insoluble fraction (AIF) has been used to infer root lignin and decomposition, AIF-defined lignin content was disconnected from the lignin abundance estimated by techniques that specifically measure lignin-derived monomers. While lignin-specific techniques indicated lignin contents of 2-10% (w/w) in roots, AIF-defined lignin contents were c. 5-10-fold higher, and their interspecific variation was found to be largely unrelated to that determined using lignin-specific techniques. High-throughput pyrolysis-gas chromatography-mass spectrometry, when combined with quantitative modeling, accurately predicted lignin abundance and composition, highlighting its feasibility for quicker assessment of lignin in roots. We demonstrate that AIF should be interpreted separately from lignin in fine roots as its abundance is unrelated to that of lignin polymers. This study provides the basis for informed decision-making with respect to lignin methodology in ecology.


Assuntos
Lignina , Árvores , Árvores/química , Lignina/química , Cromatografia Gasosa-Espectrometria de Massas
7.
Appl Environ Microbiol ; 88(1): e0178221, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669435

RESUMO

Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations.


Assuntos
Micorrizas , Florestas , Micorrizas/genética , Nitrogênio , Solo , Microbiologia do Solo , Árvores
9.
New Phytol ; 232(3): 1259-1271, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34137048

RESUMO

Recent studies on fine root functional traits proposed a root economics hypothesis where adaptations associated with mycorrhizal dependency strongly influence the organization of root traits, forming a dominant axis of trait covariation unique to roots. This conclusion, however, is based on tradeoffs of a few widely studied root traits. It is unknown how other functional traits fit into this mycorrhizal-collaboration gradient. Here, we provide a significant extension to the field of root ecology by examining how fine root secondary compounds coordinate with other root traits. We analyzed a dataset integrating compound-specific chemistry, morphology and anatomy of fine roots and leaves from 34 temperate tree species spanning major angiosperm lineages. Our data uncovered previously undocumented coordination where root chemistry, morphology and anatomy covary with each other. This coordination, aligned with mycorrhizal colonization, reflects tradeoffs between chemical protection and mycorrhizal dependency, and provides mechanistic support for the mycorrhizal-collaboration gradient. We also found remarkable phylogenetic structuring in root chemistry. These patterns were not mirrored by leaves. Furthermore, chemical protection was largely decoupled from the leaf economics spectrum. Our results unveil broad organization of root chemistry, demonstrate unique belowground adaptions, and suggest that root strategies and phylogeny could impact biogeochemical cycles through their links with root chemistry.


Assuntos
Magnoliopsida , Micorrizas , Filogenia , Folhas de Planta , Raízes de Plantas
10.
Sci Rep ; 11(1): 2567, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510349

RESUMO

To identify signaling pathways activated by oxycodone self-administration (SA), Sprague-Dawley rats self-administered oxycodone for 20 days using short-(ShA, 3 h) and long-access (LgA, 9 h) paradigms. Animals were euthanized 2 h after SA cessation and dorsal striata were used in post-mortem molecular analyses. LgA rats escalated their oxycodone intake and separated into lower (LgA-L) or higher (LgA-H) oxycodone takers. LgA-H rats showed increased striatal protein phosphorylation of ERK1/2 and MSK1/2. Histone H3, phosphorylated at serine 10 and acetylated at lysine 14 (H3S10pK14Ac), a MSK1/2 target, showed increased abundance only in LgA-H rats. RT-qPCR analyses revealed increased AMPA receptor subunits, GluA2 and GluA3 mRNAs, in the LgA-H rats. GluA3, but not GluA2, mRNA expression correlated positively with changes in pMSK1/2 and H3S10pK14Ac. These findings suggest that escalated oxycodone SA results in MSK1/2-dependent histone phosphorylation and increases in striatal gene expression. These observations offer potential avenues for interventions against oxycodone addiction.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oxicodona/farmacologia , Animais , Western Blotting , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de Glutamato/metabolismo , Transdução de Sinais/efeitos dos fármacos
11.
Artigo em Inglês | MEDLINE | ID: mdl-35548327

RESUMO

The number of people diagnosed with opioid use disorder has skyrocketed as a consequence of the opioid epidemic and the increased prescribing of opioid drugs for chronic pain relief. Opioid use disorder is characterized by loss of control of drug taking, continued drug use in the presence of adverse consequences, and repeated relapses to drug taking even after long periods of abstinence. Patients who suffer from opioid use disorder often present with cognitive deficits that are potentially secondary to structural brain abnormalities that vary according to the chemical composition of the abused opioid. This review details the neurobiological effects of oxycodone, morphine, heroin, methadone, and fentanyl on brain neurocircuitries by presenting the acute and chronic effects of these drugs on the human brain. In addition, we review results of neuroimaging in opioid use disorder patients and/or histological studies from brains of patients who had expired after acute intoxication following long-term use of these drugs. Moreover, we include relevant discussions of the neurobiological mechanisms involved in promoting abnormalities in the brains of opioid-exposed patients. Finally, we discuss how novel strategies could be used to provide pharmacological treatment against opioid use disorder.

12.
Front Pharmacol ; 12: 798362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35002733

RESUMO

In the United States, the number of people suffering from opioid use disorder has skyrocketed in all populations. Nevertheless, observations of racial disparities amongst opioid overdose deaths have recently been described. Opioid use disorder is characterized by compulsive drug consumption followed by periods of withdrawal and recurrent relapses while patients are participating in treatment programs. Similar to other rewarding substances, exposure to opioid drugs is accompanied by epigenetic changes in the brain. In addition, genetic factors that are understudied in some racial groups may also impact the clinical manifestations of opioid use disorder. These studies are important because genetic factors and epigenetic alterations may also influence responses to pharmacological therapeutic approaches. Thus, this mini-review seeks to briefly summarize what is known about the genetic bases of opioid use disorder in African Americans.

13.
New Phytol ; 228(2): 541-553, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32535912

RESUMO

Changes in fine-root morphology are typically associated with transitions from the ancestral arbuscular mycorrhizal (AM) to the alternative ectomycorrhizal (ECM) or nonmycorrhizal (NM) associations. However, the modifications in root morphology may also coincide with new modifications in leaf hydraulics and growth habit during angiosperm diversification. These hypotheses have not been evaluated concurrently, and this limits our understanding of the causes of fine-root evolution. To explore the evolution of fine-root systems, we assembled a 600+ species database to reconstruct historical changes in seed plants over time. We utilise ancestral reconstruction approaches together with phylogenetically informed comparative analyses to test whether changes in fine-root traits were most strongly associated with mycorrhizal affiliation, leaf hydraulics or growth form. Our findings showed significant shifts in root diameter, specific root length and root tissue density as angiosperms diversified, largely independent from leaf changes or mycorrhizal affiliation. Growth form was the only factor associated with fine-root traits in statistical models including mycorrhizal association and leaf venation, suggesting substantial modifications in fine-root morphology during transitions from woody to nonwoody habits. Divergences in fine-root systems were crucial in the evolution of seed plant lineages, with important implications for ecological processes in terrestrial ecosystems.


Assuntos
Ecossistema , Micorrizas , Micorrizas/genética , Fenótipo , Folhas de Planta/genética , Raízes de Plantas/genética , Sementes/genética
14.
Front Cell Dev Biol ; 8: 113, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32161758

RESUMO

Neural stem cells in the lateral ganglionic eminence (LGE) generate progenitors that migrate through the rostral migratory stream (RMS) to repopulate olfactory bulb (OB) interneurons, but the regulation of this process is poorly defined. The evolutionarily conserved Notch pathway is essential for neural development and maintenance of neural stem cells. Jagged1, a Notch ligand, is required for stem cell maintenance. In humans, heterozygous mutations in JAGGED1 cause Alagille syndrome, a genetic disorder characterized by complications such as cognitive impairment and reduced number of bile ducts in the liver, suggesting the presence of a JAGGED1 haploinsufficient phenotype. Here, we examine the role of Jagged1 using a conditional loss-of-function allele in the nervous system. We show that heterozygous Jagged1 mice possess a haploinsufficient phenotype that is associated with a reduction in size of the LGE, a reduced proliferative state, and fewer progenitor cells in the LGE and RMS. Moreover, loss of Jagged1 leads to deficits in periglomerular interneurons in the OB. Our results support a dose-dependent role for Jagged1 in maintaining progenitor division within the LGE and RMS.

15.
Front Neurosci ; 14: 617973, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33536871

RESUMO

People suffering from opioid use disorder (OUD) exhibit cognitive dysfunctions. Here, we investigated potential changes in the expression of glutamate receptors in rat hippocampi at 2 h and 31 days after the last session of oxycodone self-administration (SA). RNA extracted from the hippocampus was used in quantitative polymerase chain reaction analyses. Rats, given long-access (9 h per day) to oxycodone (LgA), took significantly more drug than rats exposed to short-access (3 h per day) (ShA). In addition, LgA rats could be further divided into higher oxycodone taking (LgA-H) or lower oxycodone taking (LgA-L) groups, based on a cut-off of 50 infusions per day. LgA rats, but not ShA, rats exhibited incubation of oxycodone craving. In addition, LgA rats showed increased mRNA expression of GluA1-3 and GluN2a-c subunits as well as Grm3, Grm5, Grm6, and Grm8 subtypes of glutamate receptors after 31 days but not after 2 h of stopping the SA experiment. Changes in GluA1-3, Grm6, and Grm8 mRNA levels also correlated with increased lever pressing (incubation) after long periods of withdrawal from oxycodone. More studies are needed to elucidate the molecular mechanisms involved in altering the expression of these receptors during withdrawal from oxycodone and/or incubation of drug seeking.

16.
Neuroscience ; 415: 173-183, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31351142

RESUMO

Addiction to prescribed opioids including oxycodone has reached tragic levels. Herein, we investigated the relevance of fibroblast growth factors (FGFs) and immediate early genes (IEGs) to withdrawal-induced incubation of drug craving following escalated oxycodone self-administration (SA). Rats were trained to self-administer oxycodone for 4 weeks. Seeking tests were performed at various intervals during 1 month of drug withdrawal. Rats were euthanized 1 day after the last test and nucleus accumbens and dorsal striata were dissected for use in PCR analyses. Rats given long access (LgA, 9 h), but not short access (ShA, 3 h) to drug escalated their oxycodone intake and exhibited incubation of oxycodone seeking during withdrawal. These rats exhibited dose-dependent increases in fgf2 expression in the dorsal striatum. Fgfr2 expression was also significantly increased in the striatum in LgA, but not ShA groups. Similarly, striatal c-fos and junB mRNA levels showed greater increases in LgA rats. The observations that fgf mRNA levels were more altered in the dorsal striatum than in the NAc of LgA rats suggest that changes in striatal FGF expression may be more salient to incubation of oxycodone craving than alterations in the NAc. Targeting FGF signaling pathways might offer novel strategies against opioid addiction.


Assuntos
Fatores de Crescimento de Fibroblastos/efeitos dos fármacos , Genes Precoces/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/metabolismo , Oxicodona/metabolismo , Animais , Comportamento Aditivo , Corpo Estriado/metabolismo , Fissura , Fatores de Crescimento de Fibroblastos/metabolismo , Masculino , Modelos Animais , Núcleo Accumbens/metabolismo , Oxicodona/administração & dosagem , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Autoadministração , Síndrome de Abstinência a Substâncias
17.
Neuroscience ; 413: 230-238, 2019 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-31202705

RESUMO

Radial glial maintenance is essential for the proper development of the cortex. It is known that the evolutionarily conserved Notch signaling pathway is required for maintaining the pool of radial glial stem cells although the mechanisms involved are not entirely understood. Here, we study the Notch ligand, Jagged1, in the mouse ventricular zone at a late stage of embryonic development. We use a conditional loss of function allele to show that Jagged1 is required for maintaining radial glial cells and when absent, leads to defects in the cortical proliferation zone and expression of intermediate progenitor cells. Using in vitro approaches, we found that depletion of Jagged1 reduced the size of primary neurospheres and their capacity to self-renewal. Finally, Jagged1 mutants also showed precocious neuronal differentiation and cortical defects. Together, these data support a role for Jagged1 in radial glia maintenance in the neocortex.


Assuntos
Córtex Cerebral/metabolismo , Células Ependimogliais/metabolismo , Proteína Jagged-1/metabolismo , Nicho de Células-Tronco/fisiologia , Animais , Movimento Celular , Córtex Cerebral/embriologia , Proteína Jagged-1/genética , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurogênese/fisiologia , Neurônios/metabolismo , Receptores Notch/metabolismo
18.
Front Neurosci ; 13: 1392, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31998063

RESUMO

Opioid use disorder (OUD) is characterized by compulsive drug taking despite adverse life consequences. Here, we sought to identify neurobiological consequences associated with the behavioral effects of contingent footshocks administered after escalation of oxycodone self-administration. To reach these goals, Sprague-Dawley rats were trained to self-administer oxycodone for 4 weeks and were then exposed to contingent electric footshocks. This paradigm helped to dichotomize rats into two distinct behavioral phenotypes: (1) those that reduce lever pressing (shock-sensitive) and (2) others that continue lever pressing (shock-resistant) for oxycodone during contingent punishment. The rats were euthanized at 2-h after the last oxycodone plus footshock session. The dorsal striata and prefrontal cortices were dissected for use in western blot and RT-qPCR analyses. All oxycodone self-administration rats showed significant decreased expression of Mu and Kappa opioid receptor proteins only in the dorsal striatum. However, expression of Delta opioid receptor protein was decreased in both brain regions. RT-qPCR analyses documented significant decreases in the expression of c-fos, fosB, fra2, junB, egr1, and egr2 mRNAs in the dorsal striatum (but not in PFC) of the shock-sensitive rats. In the PFC, junD expression was reduced in both phenotypes. However, egr3 mRNA expression was increased in the PFC of only shock-resistant rats. These results reveal that, similar to psychostimulants and alcohol, footshocks can dichotomize rats that escalated their intake of oxycodone into two distinct behavioral phenotypes. These animals also show significant differences in the mRNA expression of immediate early genes, mainly, in the dorsal striatum. The increases in PFC egr3 expression in the shock-resistant rats suggest that Egr3 might be involved in the persistence of oxycodone-associated memory under aversive conditions. This punishment-driven model may help to identify neurobiological substrates of persistent oxycodone taking and abstinence in the presence of adverse consequences.

19.
F1000Res ; 8: 1983, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32266058

RESUMO

Background: The neurosphere assay is a powerful tool to study neural stem cell biology. The objective of this protocol is to create a simple and rapid approach to generate neurospheres from the dorsal lateral ganglionic eminence of late embryonic (day 17) mice. This method predicts the average number of neurospheres and provides an approximation of its expected size after 7 days in vitro. Characterization of numbers and sizes will provide investigators with quantitative data to advise on the implementation of downstream applications, including immnocytochemistry, self-renewal and differentiation assays. Methods: Our method is based on a simple dissection technique, where tissue surrounding the dorsal lateral ventricle from a single mouse embryo is trimmed away to enrich for neural stem cell and progenitor populations. Following this dissection, tissue is mechanically dissociated by trituration. Cells are then cultured in media containing epidermal growth factor and other supplements to generate healthy primary neurospheres. Results: Using this approach, we found reproducible number of primary neurospheres after 7 days in vitro. Furthermore, we found this method yields different sizes of neurospheres. Lastly, using an anti-GFAP antibody, we confirm that these neurospheres can be used for immunocytochemistry studies. Conclusions: Future use of this protocol provides metrics on the generation of neurospheres that will be useful for further advances in the area of stem cell biology.


Assuntos
Diferenciação Celular , Células-Tronco Neurais , Animais , Células Cultivadas , Embrião de Mamíferos , Imuno-Histoquímica , Camundongos
20.
Mol Neurobiol ; 56(5): 3603-3615, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30155791

RESUMO

Repeated exposure to the opioid agonist, oxycodone, can lead to addiction. Here, we sought to identify potential neurobiological consequences of withdrawal from escalated and non-escalated oxycodone self-administration in rats. To reach these goals, we used short-access (ShA) (3 h) and long-access (LgA) (9 h) exposure to oxycodone self-administration followed by protracted forced abstinence. After 31 days of withdrawal, we quantified mRNA and protein levels of opioid receptors in the rat dorsal striatum and hippocampus. Rats in the LgA, but not the ShA, group exhibited escalation of oxycodone SA, with distinction of two behavioral phenotypes of relatively lower (LgA-L) and higher (LgA-H) oxycodone takers. Both LgA, but not ShA, phenotypes showed time-dependent increases in oxycodone seeking during the 31 days of forced abstinence. Rats from both LgA-L and LgA-H groups also exhibited decreased levels of striatal mu opioid receptor protein levels in comparison to saline and ShA rats. In contrast, mu opioid receptor mRNA expression was increased in the dorsal striatum of LgA-H rats. Moreover, hippocampal mu and kappa receptor protein levels were both increased in the LgA-H phenotype. Nevertheless, hippocampal mu receptor mRNA levels were decreased in the two LgA groups whereas kappa receptor mRNA expression was decreased in ShA and LgA oxycodone groups. Decreases in striatal mu opioid receptor protein expression in the LgA rats may serve as substrates for relapse to drug seeking because these changes occur in rats that showed incubation of oxycodone seeking.


Assuntos
Adaptação Fisiológica , Comportamento Aditivo/genética , Corpo Estriado/patologia , Hipocampo/patologia , Oxicodona/administração & dosagem , Autoadministração , Animais , Regulação para Baixo/efeitos dos fármacos , Masculino , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores Opioides kappa/genética , Receptores Opioides kappa/metabolismo , Receptores Opioides mu/genética , Receptores Opioides mu/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA