Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 6): 601-606, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38845713

RESUMO

The benzimidazole entity of the title mol-ecule, C17H21N5O, is almost planar (r.m.s. deviation = 0.0262 Å). In the crystal, bifurcated C-H⋯O hydrogen bonds link individual mol-ecules into layers extending parallel to the ac plane. Two weak C-H⋯π(ring) inter-actions may also be effective in the stabilization of the crystal structure. Hirshfeld surface analysis of the crystal structure reveals that the most important contributions for the crystal packing are from H⋯H (57.9%), H⋯C/C⋯H (18.1%) and H⋯O/O⋯H (14.9%) inter-actions. Hydrogen bonding and van der Waals inter-actions are the most dominant forces in the crystal packing. Evaluation of the electrostatic, dispersion and total energy frameworks indicate that the stabilization of the title compound is dominated via dispersion energy contributions. The mol-ecular structure optimized by density functional theory (DFT) at the B3LYP/6-311 G(d,p) level is compared with the experimentally determined mol-ecular structure in the solid state.

2.
Dalton Trans ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895770

RESUMO

The search for new metal-based anticancer drug candidates is a fundamental task in medicinal inorganic chemistry. In this work, we assessed the potential of two new Ru(II)-phosphine-mercapto complexes as potential anticancer agents. The complexes, with the formula [Ru(bipy)(dppen)(Lx)]PF6 [(1), HL1 = 2-mercapto-pyridine and (2), HL2 = 2-mercapto-pyrimidine, bipy = 2,2'-bipyridine, dppen = cis-1,2-bis(diphenylphosphino)-ethylene] were synthesized and characterized by nuclear magnetic resonance (NMR) [1H, 31P(1H), and 13C], high resolution mass spectrometry (HR-MS), cyclic voltammetry, infrared and UV-Vis spectroscopies. Complex 2 was obtained as a mixture of two isomers, 2a and 2b, respectively. The composition of these metal complexes was confirmed by elemental analysis and liquid chromatography-mass spectrometry (LC-MS). To obtain insights into their lipophilicity, their distribution coefficients between n-octanol/PBS were determined. Both complexes showed affinity mainly for the organic phase, presenting positive log P values. Also, their stability was confirmed over 48 h in different media (i.e., DMSO, PBS and cell culture medium) via HPLC, UV-Vis and 31P{1H} NMR spectroscopies. Since enzymes from the P-450 system play a crucial role in cellular detoxification and metabolism, the microsomal stability of 1, which was found to be the most interesting compound of this study, was investigated using human microsomes to verify its potential oxidation in the liver. The analyses by LC-MS and ESI-MS reveal three main metabolites, obtained by oxidation in the dppen and bipy moieties. Moreover, 1 was able to interact with human serum albumin (HSA). The cytotoxicity of the metal complexes was tested in different cancerous and non-cancerous cell lines. Complex 1 was found to be more selective than cisplatin against MDA-MB-231 breast cancer cells when compared to MCF-10A non-cancerous cells. In addition, complex 1 affects cell morphology and migration, and inhibits colony formation in MDA-MB-231 cells, making it a promising cytotoxic agent against breast cancer.

3.
Inorg Chem ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860314

RESUMO

Human African trypanosomiasis (HAT, sleeping sickness) and American trypanosomiasis (Chagas disease) are endemic zoonotic diseases caused by genomically related trypanosomatid protozoan parasites (Trypanosoma brucei and Trypanosoma cruzi, respectively). Just a few old drugs are available for their treatment, with most of them sharing poor safety, efficacy, and pharmacokinetic profiles. Only fexinidazole has been recently incorporated into the arsenal for the treatment of HAT. In this work, new multifunctional Ru(II) ferrocenyl compounds were rationally designed as potential agents against these pathogens by including in a single molecule 1,1'-bis(diphenylphosphino)ferrocene (dppf) and two bioactive bidentate ligands: pyridine-2-thiolato-1-oxide ligand (mpo) and polypyridyl ligands (NN). Three [Ru(mpo)(dppf)(NN)](PF6) compounds and their derivatives with chloride as a counterion were synthesized and fully characterized in solid state and solution. They showed in vitro activity on bloodstream T. brucei (EC50 = 31-160 nM) and on T. cruzi trypomastigotes (EC50 = 190-410 nM). Compounds showed the lowest EC50 values on T. brucei when compared to the whole set of metal-based compounds previously developed by us. In addition, several of the Ru compounds showed good selectivity toward the parasites, particularly against the highly proliferative bloodstream form of T. brucei. Interaction with DNA and generation of reactive oxygen species (ROS) were ruled out as potential targets and modes of action of the Ru compounds. Biochemical assays and in silico analysis led to the insight that they are able to inhibit the NADH-dependent fumarate reductase from T. cruzi. One representative hit induced a mild oxidation of low molecular weight thiols in T. brucei. The compounds were stable for at least 72 h in two different media and more lipophilic than both bioactive ligands, mpo and NN. An initial assessment of the therapeutic efficacy of one of the most potent and selective candidates, [Ru(mpo)(dppf)(bipy)]Cl, was performed using a murine infection model of acute African trypanosomiasis. This hit compound lacks acute toxicity when applied to animals in the dose/regimen described, but was unable to control parasite proliferation in vivo, probably because of its rapid clearance or low biodistribution in the extracellular fluids. Future studies should investigate the pharmacokinetics of this compound in vivo and involve further research to gain deeper insight into the mechanism of action of the compounds.

4.
Dalton Trans ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38855858

RESUMO

In order to investigate the structural features and antiproliferative activity of Pd(II) complexes containing halogenated ligands with different flexibility, several Schiff base and reduced Schiff base Pd(II) complexes, namely X1X2PicPd, X1X2PyPd, X1X2Pic(R)Pd, and X1X2Py(R)Pd (where X1 = X2 = Cl, Br and I; Pic: 2-picolylamine; Py = 2-(2-pyridyl)ethylamine), were synthesized and characterized by spectroscopic methods and, in the case of Br2PyPd, Cl2Py(R)Pd and ClBrPy(R)Pd, also by X-ray crystallography. The results of the X-ray crystallography showed that in both series of complexes the Pd(II) ion has a distorted square-planar geometry, although the coordination modes of the two ligands are different. In the Schiff base-type complexes the ligand acts as a tridentate chelate with NN'O donor atoms, whereas in the reduced Schiff base-type complexes the ligand acts as a bidentate chelate with NN' donor atoms. In both series of complexes, the chloride ions occupy the residual coordination sites of the Pd(II) ion. TD-DFT calculations were performed for a better understanding of the UV-Vis spectra. From these calculations it was found that the signal appearing at ∼400 nm in the complexes with reduced Schiff base ligands (X1X2Pic(R)Pd and X1X2Py(R)Pd) is mainly due to a HOMO → LUMO transition, while for the Schiff base complex ClBrPyPd the signal is due to a HOMO → LUMO+1 transition. For the complex I2PicPd, combinations of HOMO-4 → LUMO and HOMO-2 → LUMO transitions were found to be responsible for that signal. In regard to the biological activity profile, all complexes were first investigated as proteasome inhibitors by fluorometric methods. From these enzymatic assays, it emerged that they are good inhibitors with IC50 values in the low-micromolar range and that their inhibitory activity is strictly related to the presence of the metal ion. Subsequently they were also subjected to cell-based assays (the resazurin method) to assess their antiproliferative properties by using two leukemic cell lines, namely the drug-sensitive CCRF-CEM cell line and its multidrug-resistant sub-cell line CEM/ADR5000. In this test they displayed IC50 values in the sub-micromolar and low-micromolar range determined for a selected metal complex (Br2Pic(R)Pd) and ligand (Cl2Pic(R)), respectively. Moreover, docking studies were performed on the two expected molecular targets, i.e. proteasome and DNA, to shed light on the mechanisms of action of these types of Pd(II) complexes.

5.
Chemistry ; : e202401595, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38818937

RESUMO

The replacement of pyridyl by pyrazinyl in ligands of polypyridyl-based cobalt water reducing catalysts (WRC) shifts reduction potentials anodically. Together with a new, trinuclear ReI photosensitizer, these WRCs show strongly improved photocatalytic performances in turnover numbers (TONs) and maximal H2 evolution rate. Depending on the catalyst structure, up to 65 kTONs at 1 µM WRC concentration were reached. Under electrocatalytic conditions in both DMF and H2O, one of the reported WRCs displays remarkable stability, producing H2 steadily over 21 and 14 d, respectively.

6.
Org Biomol Chem ; 22(16): 3279-3286, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38572985

RESUMO

Direct conversion of naphthoxazines to diverse xanthene derivatives was achieved under one-pot operation through deconstructive annulation methodology. Sequential oxidative C(sp3)-O/C(sp3)-N cleavage followed by intramolecular/intermolecular annulation reaction was carried out under aerobic reaction conditions. Mechanistic analyses performed on the substrate revealed that the C(sp3)-O bond cleavage supersedes the C(sp3)-N bond scission. The in situ generated Betti base intermediate through the C(sp3)-O cleavage was successfully isolated. Based on a molecular docking investigation, the intermolecular annulated products demonstrated good α-glucosidase inhibitory properties.

7.
ACS Infect Dis ; 10(3): 938-950, 2024 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329933

RESUMO

The search for new anti-infectives based on metal complexes is gaining momentum. Among the different options taken by researchers, the one involving the use of organometallic complexes is probably the most successful one with a compound, namely, ferroquine, already in clinical trials against malaria. In this study, we describe the preparation and in-depth characterization of 10 new (organometallic) derivatives of the approved antifungal drug fluconazole. Our rationale is that the sterol 14α-demethylase is an enzyme part of the ergosterol biosynthesis route in Trypanosoma and is similar to the one in pathogenic fungi. To demonstrate our postulate, docking experiments to assess the binding of our compounds with the enzyme were also performed. Our compounds were then tested on a range of fungal strains and parasitic organisms, including the protozoan parasite Trypanosoma cruzi (T. cruzi) responsible for Chagas disease, an endemic disease in Latin America that ranks among some of the most prevalent parasitic diseases worldwide. Of high interest, the two most potent compounds of the study on T. cruzi that contain a ferrocene or cobaltocenium were found to be harmless for an invertebrate animal model, namely, Caenorhabditis elegans (C. elegans), without affecting motility, viability, or development.


Assuntos
Fluconazol , Trypanosoma cruzi , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Metalocenos , Antiparasitários/farmacologia , Caenorhabditis elegans , Inibidores de 14-alfa Desmetilase/química , Trypanosoma cruzi/química
8.
Angew Chem Int Ed Engl ; 63(14): e202318254, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38278766

RESUMO

Reactions of open-shell molecular graphene fragments are typically thought of as undesired decomposition processes because they lead to the loss of desired features like π-magnetism. Oxidative dimerization of phenalenyl to peropyrene shows, however, that these transformations hold promise as a synthetic tool for making complex structures via formation of multiple bonds and rings in a single step. Here, we explore the feasibility of using this "undesired" reaction of phenalenyl to build up strain and provide access to non-planar polycyclic aromatic hydrocarbons. To this end, we designed and synthesized a biradical system with two phenalenyl units linked via a biphenylene backbone. The design facilitates an intramolecular cascade reaction to a helically twisted saddle-shaped product, where the key transformations-ring-closure and ring-fusion-occur within one reaction. The negative curvature of the final peropyrene product, induced by the formed eight-membered ring, was confirmed by single-crystal X-ray diffraction analysis and the helical twist was validated via resolution of the product's enantiomers that display circularly polarized luminescence and high configurational stability.

9.
Chemistry ; 30(19): e202304181, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285807

RESUMO

Abundantly available biomass-based platform chemicals, including 5-hydroxymethylfurfural (HMF), are essential stepping stones in steering the chemical industry away from fossil fuels. The efficient catalytic oxidation of HMF to its diacid derivative, 2,5-furandicarboxylic acid (FDCA), is a promising research area with potential applications in the polymer industry. Currently, the most encouraging approaches are based on solid-state catalysts and are often conducted in basic aqueous media, conditions where HMF oxidation competes with its decomposition. Efficient molecular catalysts are practically unknown for this reaction. In this study, we report on the synthesis and electrocatalysis of surface-bound molecular ruthenium complexes for the transformation of HMF to FDCA under acidic conditions. Catalyst immobilisation on mesoporous indium tin oxide electrodes is achieved through the incorporation of phosphonic acid anchoring groups. Screening experiments with HMF and further reaction intermediates revealed the catalytic route and bottlenecks in the catalytic synthesis of FDCA. Utilising these immobilised electrocatalysts, FDCA yields of up to 85 % and faradaic efficiencies of 91 % were achieved, without any indication of substrate decomposition. Surface analysis by X-ray photoelectron spectroscopy (XPS) post-electrocatalysis unveiled the desorption of the catalyst from the electrode surface as a limiting factor in terms of catalytic performance.

10.
Inorg Chem ; 63(5): 2701-2708, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38253322

RESUMO

Here, we present the light-driven reactions of [Re(η7-C7H7)(η5-C7H9)]+ (1+) with nitriles, phosphines, and isocyanides, which are added to 1+ via a ring slippage of the tropylium cation from η7 to η3, forming [Re(η3-C7H7)(η5-C7H9)(L)2]+ (L= acetonitrile 2+; 2-phenylacetonitrile 3+; 1,3,5-triaza-5-phosphoadamantane (PTA) 4+; tert-butyl isocyanide 6+; benzyl isocyanide 7+) and [Re(η3-C7H7)(η5-C7H9)(L)]+ with L = (ethane-1,2-diyl)bis(diphenylphosphane) (dppe) 5+. To compare the reactivities of rhenium and technetium, we also investigated the synthesis of [99Tc(η6-C10H8)2]+, its substitution of naphthalene with cyclohepta-1,3,5-triene to obtain [99Tc(η7-C7H7)(η5-C7H9)]+, and its reactivity (or lack thereof) with light.

11.
Inorg Chem ; 63(2): 1083-1101, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38156413

RESUMO

A novel class of Ru(II)-based polypyridyl complexes with an auxiliary salicylaldehyde ligand [Ru(phen)2(X-Sal)]BF4 {X: H (1), 5-Cl (2), 5-Br (3), 3,5-Cl2 (4), 3,5-Br2 (5), 3-Br,5-Cl (6), 3,5-I2 (7), 5-NO2 (8), 5-Me (9), 4-Me (10), 4-OMe (11), and 4-DEA (12), has been synthesized and characterized by elemental analysis, FT-IR, and 1H/13C NMR spectroscopy. The molecular structure of 4, 6, 9, 10, and 11 was determined by single-crystal X-ray diffraction analysis which revealed structural similarities. DFT and TD-DFT calculations showed that they also possess similar electronic structures. Absorption/emission spectra were recorded for 2, 3, 10, and 11. All Ru-complexes, unlike the pure ligands and the complex lacking the salicylaldehyde component, displayed outstanding antiproliferative activity in the screening test (10 µM) against CCRF-CEM leukemia cells underlining the crucial role of the presence of the auxiliary ligand for the biological activity. The two most active derivatives, namely 7 and 10, were selected for continuous assays showing IC50 values in the submicromolar and micromolar range against drug-sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells, respectively. These two compounds were investigated in silico for their potential binding to duplex DNA well-matched and mismatched base pairs, since they showed remarkable selectivity indexes (2.2 and 19.5 respectively) on PBMC cells.


Assuntos
Aldeídos , Antineoplásicos , Complexos de Coordenação , Leucemia , Rutênio , Humanos , Ligantes , Leucócitos Mononucleares/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Rutênio/farmacologia , Rutênio/química , Complexos de Coordenação/química , Antineoplásicos/farmacologia , Antineoplásicos/química
12.
J Am Chem Soc ; 146(1): 430-436, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38134360

RESUMO

Macrocyclic host molecules bound to electrode surfaces enable the complexation of catalytically active guests for molecular heterogeneous catalysis. We present a surface-anchored host-guest complex with the ability to electrochemically oxidize ammonia in both organic and aqueous solutions. With an adamantyl motif as the binding group on the backbone of the molecular catalyst [Ru(bpy-NMe2)(tpada)(Cl)](PF6) (1) (where bpy-NMe2 is 4,4'-bis(dimethylamino)-2,2'-bipyridyl and tpada is 4'-(adamantan-1-yl)-2,2':6',2″-terpyridine), high binding constants with ß-cyclodextrin were observed in solution (in DMSO-d6:D2O (7:3), K11 = 492 ± 21 M-1). The strong binding affinities were also transferred to a mesoporous ITO (mITO) surface functionalized with a phosphonated derivative of ß-cyclodextrin. The newly designed catalyst (1) was compared to the previously reported naphthyl-substituted catalyst [Ru(bpy-NMe2)(tpnp)(Cl)](PF6) (2) (where tpnp is 4'-(naphthalene-2-yl)-2,2':6',2″-terpyridine) for its stability during catalysis. Despite the insulating nature of the adamantyl substituent serving as the binding group, the stronger binding of this unit to the host-functionalized electrode and the resulting shorter distance between the catalytic active center and the surface led to better performance and higher stability. Both guests are able to oxidize ammonia in both organic and aqueous solutions, and the host-anchored electrode can be refunctionalized multiple times (>3) following the loss of the catalytic activity, without a reduction in performance. Guest 1 exhibits significantly higher stability in comparison to guest 2 toward basic conditions, which often constitutes a challenge for anchored molecular systems. Ammonia oxidation in water led to the selective formation of NO3- with Faradaic efficiencies of up to 100%.

13.
RSC Adv ; 13(48): 34064-34077, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38019986

RESUMO

Two 1,3,4-oxadiazole-2-thione-N-Mannich derivatives, specifically 5-(4-chlorophenyl)-3-[(2-trifluoromethylphenylamino)methyl]-1,3,4-oxadiazole-2(3H)-thione (1) and 5-(4-chlorophenyl)-3-[(2,5-difluorophenylamino)methyl]-1,3,4-oxadiazole-2(3H)-thione (2), were synthesized and then characterized by elemental analysis and NMR (1H and 13C) spectroscopy and the single crystal X-ray diffraction method. The formed weak intermolecular interactions in the solid-state structures of these derivatives were thoroughly investigated utilizing a variety of theoretical tools such as Hirshfeld surface analysis and quantum theory of atoms in molecules (QTAIM). Furthermore, the CLP-PIXEL and density functional theory calculations were used to study the energetics of molecular dimers. Numerous weak intermolecular interactions such as C-H⋯S/Cl/F/π interactions, a directional C-Cl⋯Cl halogen bond, π-stacking, type C-F⋯F-C contact and a short F⋯O interaction, help to stabilize the crystal structure of 1. Crystal structure 2 also stabilizes with several weak intermolecular contacts, including N-H⋯S, C-H⋯N//Cl/F interactions, a highly directional C1-Cl1⋯C(π) halogen bond and C(π)⋯C(π) interaction. In vitro antimicrobial potency of compounds 1 and 2 was assessed against various Gram-positive and Gram-negative bacterial strains and the pathogenic yeast-like Candida albicans. Both compounds showed marked activity against all tested Gram-positive bacteria and weak activity against Escherichia coli and lacked inhibitory activity against Pseudomonas aeruginosa. In addition, compounds 1 and 2 displayed good in vitro anti-proliferative activity against hepatocellular carcinoma (HepG-2) and mammary gland breast cancer (MCF-7) cancer cell lines. Molecular docking studies revealed the binding modes of title compounds at the active sites of prospective therapeutic targets.

14.
Dalton Trans ; 52(43): 15757-15766, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37846621

RESUMO

The pursuit of molecular imaging for tumors has led to endeavors focused on targeting epidermal growth factor receptors (EGFR) through monoclonal antibodies or radionuclide-labelled EGF analogs with 99mTc, 111In, or 131I. In this context, various 99mTc-labeled EGFR inhibitors using quinazoline structures have been reported based on the so-called pendant approach and on two types of complexes and labelling strategies: "4 + 1" mixed ligand complexes and fac-tricarbonyl complexes. Apart from this approach, which alters lead structures by linking pharmacophores to chelator frameworks through different connectors, the integrated incorporation of topoisomerase and tyrosine kinase inhibitors into Re and 99mTc complexes has not been explored. Here we present [M(η6-inhibitor)2]+ (M = Re, 99mTc) and [Re(η6-bz)(η6-inhibitor)]+ complexes, where the core structure of an EGFR tyrosine kinase inhibitor binds directly to the metal center. These complexes exhibit potential for tumor imaging: initial biological investigations highlight the influence of one versus two bound inhibitors on the metal center.


Assuntos
Radioisótopos , Rênio , Radioisótopos/química , Receptores ErbB/metabolismo , Quelantes/química , Diagnóstico por Imagem , Rênio/química , Tecnécio/química , Compostos Radiofarmacêuticos/química
15.
Chembiochem ; 24(23): e202300496, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37752096

RESUMO

The cell redox balance can be disrupted by the oxidation of biological peptides, eventually leading to cell death, which provides opportunities to develop cytotoxic drugs. With the aim of developing compounds capable of specifically inducing fatal redox reactions upon light irradiation, we have developed a library of copper compounds. This metal is abundant and considered essential for human health, making it particularly attractive for the development of new anticancer drugs. Copper(I) clusters with thiol ligands (including 5 novel ones) have been synthesized and characterized. Structures were elucidated by X-ray diffraction and showed that the compounds are oligomeric clusters. The clusters display high photooxidation capacity towards cysteine - an essential amino acid - upon light irradiation in the visible range (450 nm), while remaining completely inactive in the dark. This photoredox activity against a biological thiol is very encouraging for the development of anticancer photoredox drugs.The in vitro assay on murine colorectal cancer cells (CT26) did not show any toxicity - whether in the dark or when exposed to 450 nm light, likely because of the poor solubility of the complexes in biological medium.


Assuntos
Antineoplásicos , Compostos de Sulfidrila , Humanos , Animais , Camundongos , Compostos de Sulfidrila/química , Cobre/química , Oxirredução , Cisteína/química , Antineoplásicos/farmacologia , Antineoplásicos/química
16.
Chembiochem ; 24(19): e202300467, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37526951

RESUMO

The search for new metal-based photosensitizers (PSs) for anticancer photodynamic therapy (PDT) is a fast-developing field of research. Knowing that polymetallic complexes bear a high potential as PDT PSs, in this study, we aimed at combining the known photophysical properties of a rhenium(I) tricarbonyl complex and a ruthenium(II) polypyridyl complex to prepare a ruthenium-rhenium binuclear complex that could act as a PS for anticancer PDT. Herein, we present the synthesis and characterization of such a system and discuss its stability in aqueous solution. In addition, one of our complexes prepared, which localized in mitochondria, was found to have some degree of selectivity towards two types of cancerous cells: human lung carcinoma A549 and human colon colorectal adenocarcinoma HT29, with interesting photo-index (PI) values of 135.1 and 256.4, respectively, compared to noncancerous retinal pigment epithelium RPE1 cells (22.4).


Assuntos
Complexos de Coordenação , Fotoquimioterapia , Rênio , Rutênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Rutênio/farmacologia , Complexos de Coordenação/farmacologia
17.
Nat Commun ; 14(1): 4725, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550281

RESUMO

Two-dimensional (2D) materials are a key target for many applications in the modern day. Self-assembly is one approach that can bring us closer to this goal, which usually relies upon strong, directional interactions instead of covalent bonds. Control over less directional forces is more challenging and usually does not result in as well-defined materials. Explicitly incorporating topography into the design as a guiding effect to enhance the interacting forces can help to form highly ordered structures. Herein, we show the process of shape-assisted self-assembly to be consistent across a range of derivatives that highlights the restriction of rotational motion and is verified using a diverse combination of solid state analyses. A molecular curvature governed angle distribution nurtures monomers into loose columns that then arrange to form 2D structures with long-range order observed in both crystalline and soft materials. These features strengthen the idea that shape becomes an important design principle leading towards precise molecular self-assembly and the inception of new materials.

18.
Chem Commun (Camb) ; 59(50): 7743-7746, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37221917

RESUMO

Dimethylnonacethrene is the first derivative of the cethrene family that is energetically more stable than the product of its electrocyclic ring closure. Compared to the shorter homologue dimethylcethrene, the new system is EPR-active, because of a significantly lowered singlet-triplet gap, and displays remarkable stability. Our results suggest that adjustment of the steric bulk in the fjord region can enable realisation of diradicaloid-based magnetic photoswitches.

19.
Angew Chem Int Ed Engl ; 62(20): e202218347, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36917074

RESUMO

Five osmium(II) polypyridyl complexes of the general formula [Os(4,7-diphenyl-1,10-phenanthroline)2 L]2+ were synthesized as photosensitizers for photodynamic therapy by varying the nature of the ligand L. Thanks to the pronounced π-extended structure of the ligands and the heavy atom effect provided by the osmium center, these complexes exhibit a high absorption in the near-infrared (NIR) region (up to 740 nm), unlike related ruthenium complexes. This led to a promising phototoxicity in vitro against cancer cells cultured as 2D cell layers but also in multicellular tumor spheroids upon irradiation at 740 nm. The complex [Os(4,7-diphenyl-1,10-phenanthroline)2 (2,2'-bipyridine)]2+ was found to be the most efficient against various cancer cell lines, with high phototoxicity indexes. Experiments on CT26 tumor-bearing BALB/c mice also indicate that the OsII complexes could significantly reduce tumor growth following 740 nm laser irradiation. The high phototoxicity in the biological window of this structurally simple complex makes it a promising photosensitizer for cancer treatment.


Assuntos
Complexos de Coordenação , Neoplasias , Fotoquimioterapia , Rutênio , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Osmio/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Complexos de Coordenação/química , Neoplasias/tratamento farmacológico , Rutênio/farmacologia , Rutênio/química
20.
Inorg Chem ; 62(10): 4227-4237, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36853095

RESUMO

Thermal treatment of the ReIII hydride complex [ReH(η5-C6H7)(η6-C6H6)]+ in CH3CN results in the formation of [Re(η6-C6H6)(NCCH3)3]+. This semi-solvated complex is remarkably stable under an ambient atmosphere and exhibits a fast CH3CN self-exchange, which facilitates substitution reactions. The CH3CN ligands are replaced by σ-donating phosphines such as trimethyl phosphine (PMe3), triphenyl phosphine (PPh3), or the bidentate 1,2-bis(diphenylphosphino)ethane (dppe) to afford [Re(η6-C6H6)(NCCH3)3-x(PR3)x]+ (if R = Me, then x = 2; if R = Ph, then x = 1 or 2) or [Re(η6-C6H6)(dppe)(NCCH3)]+, respectively. [Re(η6-C6H6)(NCCH3)3]+ also reacts with π-acceptors such as 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen), or CO (1 atm) to give [Re(η6-C6H6)(L)(NCCH3)]+ (L = bipy or phen) and [Re(η6-C6H6)(CO)(NCCH3)2]+, respectively. The latter does not show any signs of decomposition after being exposed to an ambient atmosphere for multiple days. Additionally, [Re(η6-C6H6)(NCCH3)3]+ reacts with π-donors such as the dienes 2,3-dimethyl-1,3-butadiene (DMBD), norbornadiene (NBD), or 1,5-cyclooctadiene (COD) to give [Re(η6-C6H6)(η4-diene)(NCCH3)]+ (diene = DMBD, NBD, and COD). All three complexes are extremely stable and do not decompose during purification by preparative high-performance liquid chromatography (aqueous acidic gradient). In the presence of 18-crown-6, [Re(η6-C6H6)(NCCH3)3]+ reacts with lithium cyclopentadienyl to give the sandwich complex [Re(η5-C5H5)(η6-C6H6)]. Loss of the coordinated benzene was observed when treating [Re(η6-C6H6)(NCCH3)3]+ with diphenylacetylene (PhC≡CPh), yielding the tetra-coordinated [Re(NCCH3)(η2-PhC≡CPh)3]+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA