Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38068233

RESUMO

In this work, a novel approach is suggested to grow bilayer fibers by combining electrospinning and atomic layer deposition (ALD). Polyvinyl alcohol (PVA) fibers are obtained by electrospinning and subsequently covered with thin Al2O3 deposited at a low temperature by ALD. To burn the PVA core, the fibrous structures are subjected to high-temperature annealing. Differential scanning calorimetry (DSC) analysis of the PVA mat is performed to establish the proper annealing regime for burning off the PVA core and obtaining hollow fibers. The hollow fibers thus formed are covered with a ZnO layer deposited by ALD at a higher temperature within the ALD window of ZnO. This procedure allows us to prepare ZnO films with better crystallinity and stoichiometry. Different characterization methods-SEM, ellipsometry, XRD, and XPS-are performed at each step to investigate the processes in detail.

2.
Materials (Basel) ; 16(19)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37834684

RESUMO

The magneto-optical (MO) Kerr effects for ZnO and ZnO:Ni-doped nanolaminate structures prepared using atomic layer deposition (ALD) have been investigated. The chemical composition and corresponding structural and morphological properties were studied using XRD and XPS and compared for both nanostructures. The 2D array gradient maps of microscale variations of the Kerr angle polarization rotation were acquired by means of MO Kerr microscopy. The obtained data revealed complex behavior and broad statistical dispersion and showed distinct qualitative and quantitative differences between the undoped ZnO and ZnO:Ni-doped nanolaminates. The detected magneto-optical response is extensively inhomogeneous in ZnO:Ni films, and a giant Kerr polarization rotation angle reaching up to ~2° was established. This marks the prospects for further development of magneto-optical effects in ALD ZnO modified by transition metal oxide nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA