Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Kidney Int ; 97(5): 966-979, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32081304

RESUMO

Neutrophil gelatinase associated lipocalin (NGAL, Lcn2) is the most widely studied biomarker of acute kidney injury (AKI). Previous studies have demonstrated that NGAL is produced by the kidney and released into the urine and plasma. Consequently, NGAL is currently considered a tubule specific injury marker of AKI. However, the utility of NGAL to predict AKI has been variable suggesting that other mechanisms of production are present. IL-6 is a proinflammatory cytokine increased in plasma by two hours of AKI and mediates distant organ effects. Herein, we investigated the role of IL-6 in renal and extra-renal NGAL production. Wild type mice with ischemic AKI had increased plasma IL-6, increased hepatic NGAL mRNA, increased plasma NGAL, and increased urine NGAL; all reduced in IL-6 knockout mice. Intravenous IL-6 in normal mice increased hepatic NGAL mRNA, plasma NGAL and urine NGAL. In mice with hepatocyte specific NGAL deletion (Lcn2hep-/-) and ischemic AKI, hepatic NGAL mRNA was absent, and plasma and urine NGAL were reduced. Since urine NGAL levels appear to be dependent on plasma levels, the renal handling of circulating NGAL was examined using recombinant human NGAL. After intravenous recombinant human NGAL administration to mice, human NGAL in mouse urine was detected by ELISA during proximal tubular dysfunction, but not in pre-renal azotemia. Thus, during AKI, IL-6 mediates hepatic NGAL production, hepatocytes are the primary source of plasma and urine NGAL, and plasma NGAL appears in the urine during proximal tubule dysfunction. Hence, our data change the paradigm by which NGAL should be interpreted as a biomarker of AKI.


Assuntos
Injúria Renal Aguda , Lipocalinas , Injúria Renal Aguda/diagnóstico , Proteínas de Fase Aguda/genética , Animais , Biomarcadores , Hepatócitos , Interleucina-6 , Lipocalina-2/genética , Camundongos
2.
Am J Physiol Renal Physiol ; 297(2): F350-61, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19493963

RESUMO

Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P(i)) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P(i) cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-IIa could be modulated by the altered lipid composition of the K-deficient BBM (Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M. Kidney Int 60: 694-704, 2001; Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. J Biol Chem 279: 49160-49171, 2004). Here we investigated the role of the renal Na-P(i) cotransporters NaPi-IIc and PiT-2 in K deficiency. Using Western blotting, immunofluorescence, and quantitative real-time PCR, we found that, in rats and in mice, K deficiency is associated with a dramatic decrease in the NaPi-IIc protein abundance in proximal tubular BBM and in NaPi-IIc mRNA. In addition, we documented the presence of a third Na-coupled P(i) transporter in the renal BBM, PiT-2, whose abundance is also decreased by dietary K deficiency in rats and in mice. Finally, electron microscopy showed subcellular redistribution of NaPi-IIc in K deficiency: in control rats, NaPi-IIc immunolabel was primarily in BBM microvilli, whereas, in K-deficient rats, NaPi-IIc BBM label was reduced, and immunolabel was prevalent in cytoplasmic vesicles. In summary, our results demonstrate that decreases in BBM abundance of the phosphate transporter NaPi-IIc and also PiT-2 might contribute to the phosphaturia of dietary K deficiency, and that the three renal BBM phosphate transporters characterized so far can be differentially regulated by dietary perturbations.


Assuntos
Rim/metabolismo , Fósforo na Dieta/metabolismo , Deficiência de Potássio/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/metabolismo , Animais , Transporte Biológico , Membrana Celular/metabolismo , Vesículas Citoplasmáticas/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hipofosfatemia/metabolismo , Rim/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microvilosidades/metabolismo , Fósforo na Dieta/sangue , Fósforo na Dieta/urina , Deficiência de Potássio/genética , Transporte Proteico , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/genética , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIc/genética
3.
J Neurophysiol ; 92(6): 3446-54, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15306626

RESUMO

Molecular mechanisms underlying the acquisition of stable electrical phenotypes in developing neurons remain poorly defined. As Xenopus embryonic spinal neurons mature, they initially exhibit dramatic changes in excitability due to a threefold increase in voltage-gated potassium current (IKv) density. Later when mature neurons begin synapse formation, IKv density remains stable. Elevation of Kv1.1 and Kv2.1 RNA levels indicates that excess transcript levels of these Kv genes can increase current density in both young and mature neurons. In contrast, Kv2.2 overexpression increases IKv density in young but not mature neurons despite the presence of protein translated from injected RNA at this stage. Because protein domains can determine biophysical as well as subcellular localization properties of channel subunits, we tested whether a region of the Kv2.2 subunit regulated functional expression in mature neurons. We focused on the large cytoplasmic carboxy tail, a region that differs most between Kv2.2 and the structurally related Kv2.1 subunit. Chimeric Kv2 subunits were generated in which different regions of the large cytoplasmic carboxyl tail were exchanged between Kv2.1 and Kv2.2 subunits. All chimeric Kv2 subunits induced voltage-gated potassium currents when expressed heterologously in oocytes. In vivo chimeric subunits increased IKv density in young neurons on overexpression in the developing embryo. In contrast, in mature neurons, only those chimeras lacking a domain in the proximal carboxy terminus, proxC, increased IKv density when overexpressed. Thus the proxC domain mediates developmental and subunit-specific regulation of IKv and identifies a novel function for protein domains.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurônios/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Potenciais da Membrana/fisiologia , Neurônios/citologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Canais de Potássio Shab , Medula Espinal/citologia , Medula Espinal/embriologia , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA