Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Commun ; 14(1): 6422, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828026

RESUMO

Tumors acquire alterations in oncogenes and tumor suppressor genes in an adaptive walk through the fitness landscape of tumorigenesis. However, the interactions between oncogenes and tumor suppressor genes that shape this landscape remain poorly resolved and cannot be revealed by human cancer genomics alone. Here, we use a multiplexed, autochthonous mouse platform to model and quantify the initiation and growth of more than one hundred genotypes of lung tumors across four oncogenic contexts: KRAS G12D, KRAS G12C, BRAF V600E, and EGFR L858R. We show that the fitness landscape is rugged-the effect of tumor suppressor inactivation often switches between beneficial and deleterious depending on the oncogenic context-and shows no evidence of diminishing-returns epistasis within variants of the same oncogene. These findings argue against a simple linear signaling relationship amongst these three oncogenes and imply a critical role for off-axis signaling in determining the fitness effects of inactivating tumor suppressors.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Camundongos , Humanos , Animais , Proteínas Proto-Oncogênicas p21(ras)/genética , Oncogenes/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Mutação
2.
Blood Adv ; 7(21): 6744-6750, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37399491

RESUMO

We used a next-generation sequencing platform to characterize microbial cell-free DNA (mcfDNA) in plasma samples from patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT). In this observational study, we sought to characterize plasma mcfDNA in order to explore its potential association with the immunologic complications of transplantation. We compared serially collected patient samples with plasma collected from healthy control subjects. We observed changes in total mcfDNA burden in the plasma after transplantation, which was most striking during the early posttransplant neutropenic phase. This elevation could be attributed to a number of specific bacterial taxa, including Veillonella, Bacteroides, and Prevotella (genus level). For an additional cohort of patients, we compared the data of mcfDNA from plasma with 16s-ribosomal RNA sequencing data from stool samples collected at matched time points. In a number of patients, we confirmed that mcfDNA derived from specific microbial taxa (eg, Enterococcus) could also be observed in the matched stool sample. Quantification of mcfDNA may generate novel insights into mechanisms by which the intestinal microbiome influences systemic cell populations and, thus, has been associated with outcomes for patients with cancer.


Assuntos
Ácidos Nucleicos Livres , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Neoplasias , Neutropenia , Humanos , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Neoplasias/complicações
3.
Clin Infect Dis ; 76(3): e1492-e1500, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35684984

RESUMO

BACKGROUND: The diagnosis of infective endocarditis (IE) can be difficult, particularly if blood cultures fail to yield a pathogen. This study evaluates the potential utility of microbial cell-free DNA (mcfDNA) as a tool to identify the microbial etiology of IE. METHODS: Blood samples from patients with suspected IE were serially collected. mcfDNA was extracted from plasma and underwent next-generation sequencing. Reads were aligned against a library containing DNA sequences belonging to >1400 different pathogens. mcfDNA from organisms present above a statistical threshold were reported and quantified in molecules per milliliter (MPM). Additional mcfDNA was collected on each subject every 2-3 days for a total of 7 collections or until discharge. RESULTS: Of 30 enrolled patients with suspected IE, 23 had definite IE, 2 had possible IE, and IE was rejected in 5 patients by modified Duke Criteria. Only the 23 patients with definite IE were included for analysis. Both mcfDNA and blood cultures achieved a sensitivity of 87%. The median duration of positivity from antibiotic treatment initiation was estimated to be approximately 38.1 days for mcfDNA versus 3.7 days for blood culture (proportional odds, 2.952; P = .02771), using a semiparametric survival analysis. mcfDNA (log10) levels significantly declined (-0.3 MPM log10 units, 95% credible interval -0.45 to -0.14) after surgical source control was performed (pre- vs postprocedure, posterior probability >0.99). CONCLUSION: mcfDNA accurately identifies the microbial etiology of IE. Sequential mcfDNA levels may ultimately help to individualize therapy by estimating a patient's burden of infection and response to treatment.


Assuntos
Ácidos Nucleicos Livres , Endocardite Bacteriana , Endocardite , Humanos , Hemocultura , Antibacterianos/uso terapêutico , Endocardite Bacteriana/diagnóstico , Endocardite/diagnóstico , Endocardite/tratamento farmacológico
4.
Clin Infect Dis ; 74(11): 2020-2027, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34460909

RESUMO

BACKGROUND: Microbial cell-free DNA (mcfDNA) sequencing of plasma can identify the presence of a pathogen in a host. In this study, we evaluated the duration of pathogen detection by mcfDNA sequencing vs conventional blood culture in patients with bacteremia. METHODS: Blood samples from patients with culture-confirmed bloodstream infection were collected within 24 hours of the index positive blood culture and 48 to 72 hours thereafter. mcfDNA was extracted from plasma, and next-generation sequencing was applied. Reads were aligned against a curated pathogen database. Statistical significance was defined with Bonferroni adjustment for multiple comparisons (P < .0033). RESULTS: A total of 175 patients with Staphylococcus aureus bacteremia (n = 66), gram-negative bacteremia (n = 74), or noninfected controls (n = 35) were enrolled. The overall sensitivity of mcfDNA sequencing compared with index blood culture was 89.3% (125 of 140), and the specificity was 74.3%. Among patients with bacteremia, pathogen-specific mcfDNA remained detectable for significantly longer than conventional blood cultures (median 15 days vs 2 days; P < .0001). Each additional day of mcfDNA detection significantly increased the odds of metastatic infection (odds ratio, 2.89; 95% confidence interval, 1.53-5.46; P = .0011). CONCLUSIONS: Pathogen mcfDNA identified the bacterial etiology of bloodstream infection for a significantly longer interval than conventional cultures, and its duration of detection was associated with increased risk for metastatic infection. mcfDNA could play a role in the diagnosis of partially treated endovascular infections.


Assuntos
Bacteriemia , Ácidos Nucleicos Livres , Sepse , Infecções Estafilocócicas , Bacteriemia/microbiologia , Hemocultura , Humanos , Infecções Estafilocócicas/diagnóstico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
5.
Clin Infect Dis ; 74(9): 1659-1668, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33870413

RESUMO

BACKGROUND: Standard testing fails to identify a pathogen in most patients with febrile neutropenia (FN). We evaluated the ability of the Karius microbial cell-free DNA sequencing test (KT) to identify infectious etiologies of FN and its impact on antimicrobial management. METHODS: This prospective study (ClinicalTrials.gov; NCT02912117) enrolled and analyzed 55 patients with FN. Up to 5 blood samples were collected per subject within 24 hours of fever onset (T1) and every 2 to 3 days. KT results were compared with blood culture (BC) and standard microbiological testing (SMT) results. RESULTS: Positive agreement was defined as KT identification of ≥1 isolate also detected by BC. At T1, positive and negative agreement were 90% (9/10) and 31% (14/45), respectively; 61% of KT detections were polymicrobial. Clinical adjudication by 3 independent infectious diseases specialists categorized Karius results as: unlikely to cause FN (N = 0); definite (N = 12): KT identified ≥1 organism also found by SMT within 7 days; probable (N = 19): KT result was compatible with a clinical diagnosis; possible (N = 10): KT result was consistent with infection but not considered a common cause of FN. Definite, probable, and possible cases were deemed true positives. Following adjudication, KT sensitivity and specificity were 85% (41/48) and 100% (14/14), respectively. Calculated time to diagnosis was generally shorter with KT (87%). Adjudicators determined real-time KT results could have allowed early optimization of antimicrobials in 47% of patients, by addition of antibacterials (20%) (mostly against anaerobes [12.7%]), antivirals (14.5%), and/or antifungals (3.6%); and antimicrobial narrowing in 27.3% of cases. CLINICAL TRIALS REGISTRATION: NCT02912117. CONCLUSION: KT shows promise in the diagnosis and treatment optimization of FN.


Assuntos
Ácidos Nucleicos Livres , Neutropenia Febril , Antibacterianos/uso terapêutico , Neutropenia Febril/diagnóstico , Neutropenia Febril/tratamento farmacológico , Neutropenia Febril/etiologia , Febre/etiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Estudos Prospectivos
6.
J Bone Joint Surg Am ; 103(18): 1705-1712, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34293751

RESUMO

BACKGROUND: Over 1 million Americans undergo joint replacement each year, and approximately 1 in 75 will incur a periprosthetic joint infection. Effective treatment necessitates pathogen identification, yet standard-of-care cultures fail to detect organisms in 10% to 20% of cases and require invasive sampling. We hypothesized that cell-free DNA (cfDNA) fragments from microorganisms in a periprosthetic joint infection can be found in the bloodstream and utilized to accurately identify pathogens via next-generation sequencing. METHODS: In this prospective observational study performed at a musculoskeletal specialty hospital in the U.S., we enrolled 53 adults with validated hip or knee periprosthetic joint infections. Participants had peripheral blood drawn immediately prior to surgical treatment. Microbial cfDNA from plasma was sequenced and aligned to a genome database with >1,000 microbial species. Intraoperative tissue and synovial fluid cultures were performed per the standard of care. The primary outcome was accuracy in organism identification with use of blood cfDNA sequencing, as measured by agreement with tissue-culture results. RESULTS: Intraoperative and preoperative joint cultures identified an organism in 46 (87%) of 53 patients. Microbial cfDNA sequencing identified the joint pathogen in 35 cases, including 4 of 7 culture-negative cases (57%). Thus, as an adjunct to cultures, cfDNA sequencing increased pathogen detection from 87% to 94%. The median time to species identification for cases with genus-only culture results was 3 days less than standard-of-care methods. Circulating cfDNA sequencing in 14 cases detected additional microorganisms not grown in cultures. At postoperative encounters, cfDNA sequencing demonstrated no detection or reduced levels of the infectious pathogen. CONCLUSIONS: Microbial cfDNA from pathogens causing local periprosthetic joint infections can be detected in peripheral blood. These circulating biomarkers can be sequenced from noninvasive venipuncture, providing a novel source for joint pathogen identification. Further development as an adjunct to tissue cultures holds promise to increase the number of cases with accurate pathogen identification and improve time-to-speciation. This test may also offer a novel method to monitor infection clearance during the treatment period. LEVEL OF EVIDENCE: Diagnostic Level II. See Instructions for Authors for a complete description of levels of evidence.


Assuntos
Ácidos Nucleicos Livres/genética , Infecções Relacionadas à Prótese/microbiologia , Idoso , Artroplastia de Quadril , Artroplastia do Joelho , Ácidos Nucleicos Livres/sangue , Feminino , Humanos , Masculino , Estudos Prospectivos
7.
Thorax ; 76(12): 1231-1235, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33888575

RESUMO

Host inflammatory responses predict worse outcome in severe pneumonia, yet little is known about what drives dysregulated inflammation. We performed metagenomic sequencing of microbial cell-free DNA (mcfDNA) in 83 mechanically ventilated patients (26 culture-positive, 41 culture-negative pneumonia, 16 uninfected controls). Culture-positive patients had higher levels of mcfDNA than those with culture-negative pneumonia and uninfected controls (p<0.005). Plasma levels of inflammatory biomarkers (fractalkine, procalcitonin, pentraxin-3 and suppression of tumorigenicity-2) were independently associated with mcfDNA levels (adjusted p<0.05) among all patients with pneumonia. Such host-microbe interactions in the systemic circulation of patients with severe pneumonia warrant further large-scale clinical and mechanistic investigations.


Assuntos
Ácidos Nucleicos Livres , Pneumonia , Biomarcadores , Humanos , Pró-Calcitonina
8.
Clin Infect Dis ; 73(7): e2355-e2361, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32584965

RESUMO

BACKGROUND: Laboratory confirmation of early Lyme borreliosis (LB) is challenging. Serology is insensitive during the first days to weeks of infection, and blood polymerase chain reaction (PCR) offers similarly poor performance. Here, we demonstrate that detection of Borrelia burgdorferi (B.b.) cell-free DNA (cfDNA) in plasma can improve diagnosis of early LB. METHODS: B.b. detection in plasma samples using unbiased metagenomic cfDNA sequencing performed by a commercial laboratory (Karius Inc) was compared with serology and blood PCR in 40 patients with physician-diagnosed erythema migrans (EM), 28 of whom were confirmed to have LB by skin biopsy culture (n = 18), seroconversion (n = 2), or both (n = 8). B.b. sequence analysis was performed using investigational detection thresholds, different from Karius' clinical test. RESULTS: B.b. cfDNA was detected in 18 of 28 patients (64%) with laboratory-confirmed EM. In comparison, sensitivity of acute-phase serology using modified 2-tiered testing (MTTT) was 50% (P = .45); sensitivity of blood PCR was 7% (P = .0002). Combining B.b. cfDNA detection and MTTT increased diagnostic sensitivity to 86%, significantly higher than either approach alone (P ≤ .04). B.b. cfDNA sequences matched precisely with strain-specific sequence generated from the same individual's cultured B.b. isolate. B.b. cfDNA was not observed at any level in plasma from 684 asymptomatic ambulatory individuals. Among 3000 hospitalized patients tested as part of clinical care, B.b. cfDNA was detected in only 2 individuals, both of whom had clinical presentations consistent with LB. CONCLUSIONS: This is the first report of B.b. cfDNA detection in early LB and a demonstration of potential diagnostic utility. The combination of B.b. cfDNA detection and acute-phase MTTT improves clinical sensitivity for diagnosis of early LB.


Assuntos
Ácidos Nucleicos Livres , Eritema Migrans Crônico , Doença de Lyme , Borrelia burgdorferi/isolamento & purificação , Ácidos Nucleicos Livres/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Eritema Migrans Crônico/diagnóstico , Eritema Migrans Crônico/microbiologia , Humanos , Doença de Lyme/diagnóstico
9.
Clin Infect Dis ; 73(11): e3876-e3883, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-33119063

RESUMO

BACKGROUND: Noninvasive diagnostic options are limited for invasive mold infections (IMIs). We evaluated the performance of a plasma microbial cell-free DNA sequencing (mcfDNA-Seq) test for diagnosing pulmonary IMI after hematopoietic cell transplant (HCT). METHODS: We retrospectively assessed the diagnostic performance of plasma mcfDNA-Seq next-generation sequencing in 114 HCT recipients with pneumonia after HCT who had stored plasma obtained within 14 days of diagnosis of proven/probable Aspergillus IMI (n = 51), proven/probable non-Aspergillus IMI (n = 24), possible IMI (n = 20), and non-IMI controls (n = 19). Sequences were aligned to a database including >400 fungi. Organisms above a fixed significance threshold were reported. RESULTS: Among 75 patients with proven/probable pulmonary IMI, mcfDNA-Seq detected ≥1 pathogenic mold in 38 patients (sensitivity, 51% [95% confidence interval {CI}, 39%-62%]). When restricted to samples obtained within 3 days of diagnosis, sensitivity increased to 61%. McfDNA-Seq had higher sensitivity for proven/probable non-Aspergillus IMI (sensitivity, 79% [95% CI, 56%-93%]) compared with Aspergillus IMI (sensitivity, 31% [95% CI, 19%-46%]). McfDNA-Seq also identified non-Aspergillus molds in an additional 7 patients in the Aspergillus subgroup and Aspergillus in 1 patient with possible IMI. Among 19 non-IMI pneumonia controls, mcfDNA-Seq was negative in all samples, suggesting a high specificity (95% CI, 82%-100%) and up to 100% positive predictive value (PPV) with estimated negative predictive values (NPVs) of 81%-99%. The mcfDNA-Seq assay was complementary to serum galactomannan index testing; in combination, they were positive in 84% of individuals with proven/probable pulmonary IMI. CONCLUSIONS: Noninvasive mcfDNA-Seq had moderate sensitivity and high specificity, NPV, and PPV for pulmonary IMI after HCT, particularly for non-Aspergillus species.


Assuntos
Ácidos Nucleicos Livres , Transplante de Células-Tronco Hematopoéticas , Pneumonia , Fungos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Estudos Retrospectivos , Transplantados
10.
PLoS One ; 15(4): e0231239, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32294121

RESUMO

BACKGROUND: Chorioamnionitis has been linked to spontaneous preterm labor and complications such as neonatal sepsis. We hypothesized that microbial cell-free (cf) DNA would be detectable in maternal plasma in patients with chorioamnionitis and could be the basis for a non-invasive method to detect fetal exposure to microorganisms. OBJECTIVE: The purpose of this study was to determine whether next generation sequencing could detect microbial cfDNA in maternal plasma in patients with chorioamnionitis. STUDY DESIGN: Maternal plasma (n = 94) and umbilical cord plasma (n = 120) were collected during delivery at gestational age 28-41 weeks. cfDNA was extracted and sequenced. Umbilical cord plasma samples with evidence of contamination were excluded. The prevalence of microorganisms previously implicated in choriomanionitis, neonatal sepsis and intra-amniotic infections, as described in the literature, were examined to determine if there was enrichment of these microorganisms in this cohort. Specific microbial cfDNA associated with chorioamnionitis was first detected in umbilical cord plasma and confirmed in the matched maternal plasma samples (n = 77 matched pairs) among 14 cases of histologically confirmed chorioamnionitis and one case of clinical chorioamnionitis; 63 paired samples were used as controls. A correlation of rank of a given microorganism across maternal plasma and matched umbilical cord plasma was used to assess whether signals found in umbilical cord plasma were also present in maternal plasma. RESULTS: Microbial DNA sequences associated with clinical and/or histological chorioamnionitis were enriched in maternal plasma in cases with suspected chorioamnionitis when compared to controls (12/14 microorganisms, p = 0.02). Analysis of the microbial cfDNA in umbilical cord plasma among the 1,251 microorganisms detectable with this assay identified Streptococcus mitis, Ureaplasma spp., and Mycoplasma spp. in cases of suspected chorioamnionitis. This assay also detected cfDNA from Lactobacillus spp. in controls. Comparison between maternal plasma and umbilical cord plasma confirmed these signatures were also present in maternal plasma. Unbiased analysis of microorganisms with significantly correlated signal between matched maternal plasma and umbilical cord plasma identified the above listed 3 microorganisms, all of which have previously been implicated in patients with chorioamnionitis (Mycoplasma hominis p = 0.0001; Ureaplasma parvum p = 0.002; Streptococcus mitis p = 0.007). These data show that the pathogen signal relevant for chorioamnionitis can be identified in both maternal and umbilical cord plasma. CONCLUSION: This is the first report showing the detection of relevant microbial cell-free cfDNA in maternal plasma and umbilical cord plasma in patients with clinical and/or histological chorioamnionitis. These results may lead to the development of a specific assay to detect perinatal infections for targeted therapy to reduce early neonatal sepsis complications.


Assuntos
Ácidos Nucleicos Livres/sangue , Corioamnionite/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Cordão Umbilical/microbiologia , Adulto , Corioamnionite/microbiologia , Estudos de Coortes , Feminino , Sangue Fetal/química , Sangue Fetal/metabolismo , Sangue Fetal/microbiologia , Idade Gestacional , Humanos , Recém-Nascido , Mycoplasma/genética , Mycoplasma/patogenicidade , Sepse Neonatal/sangue , Sepse Neonatal/diagnóstico , Sepse Neonatal/microbiologia , Gravidez , Streptococcus mitis/genética , Streptococcus mitis/patogenicidade , Cordão Umbilical/patologia , Ureaplasma/genética , Ureaplasma/patogenicidade , Adulto Jovem
11.
J Vasc Surg Cases Innov Tech ; 5(2): 143-148, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31193416

RESUMO

Intravesical instillation of bacille Calmette-Guérin (BCG), an attenuated strain of Mycobacterium bovis, is an adjuvant immunotherapy for bladder carcinoma. Typical complications include fever, malaise, and dysuria. However, more severe complications have been reported, including granulomatous pneumonitis, BCG sepsis, and vascular infections. We present a case of an infrarenal abdominal aortic aneurysm complicated by iliopsoas abscess 2 years after BCG treatment and discuss a novel diagnostic tool for mycobacterial strain identification.

12.
Nat Microbiol ; 4(4): 663-674, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30742071

RESUMO

Thousands of pathogens are known to infect humans, but only a fraction are readily identifiable using current diagnostic methods. Microbial cell-free DNA sequencing offers the potential to non-invasively identify a wide range of infections throughout the body, but the challenges of clinical-grade metagenomic testing must be addressed. Here we describe the analytical and clinical validation of a next-generation sequencing test that identifies and quantifies microbial cell-free DNA in plasma from 1,250 clinically relevant bacteria, DNA viruses, fungi and eukaryotic parasites. Test accuracy, precision, bias and robustness to a number of metagenomics-specific challenges were determined using a panel of 13 microorganisms that model key determinants of performance in 358 contrived plasma samples, as well as 2,625 infections simulated in silico and 580 clinical study samples. The test showed 93.7% agreement with blood culture in a cohort of 350 patients with a sepsis alert and identified an independently adjudicated cause of the sepsis alert more often than all of the microbiological testing combined (169 aetiological determinations versus 132). Among the 166 samples adjudicated to have no sepsis aetiology identified by any of the tested methods, sequencing identified microbial cell-free DNA in 62, likely derived from commensal organisms and incidental findings unrelated to the sepsis alert. Analysis of the first 2,000 patient samples tested in the CLIA laboratory showed that more than 85% of results were delivered the day after sample receipt, with 53.7% of reports identifying one or more microorganisms.


Assuntos
Ácidos Nucleicos Livres/genética , Doenças Transmissíveis/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Estudos de Coortes , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , DNA Bacteriano/genética , DNA Fúngico/genética , DNA Viral/genética , Humanos , Sepse/diagnóstico , Sepse/microbiologia
13.
J Virol ; 90(1): 152-66, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468546

RESUMO

UNLABELLED: Despite the recent development of highly effective anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and development of an effective vaccine. A precise molecular identification of transmitted/founder (T/F) HCV genomes that lead to productive clinical infection could play a critical role in vaccine research, as it has for HIV-1. However, the replication schema of these two RNA viruses differ substantially, as do viral responses to innate and adaptive host defenses. These differences raise questions as to the certainty of T/F HCV genome inferences, particularly in cases where multiple closely related sequence lineages have been observed. To clarify these issues and distinguish between competing models of early HCV diversification, we examined seven cases of acute HCV infection in humans and chimpanzees, including three examples of virus transmission between linked donors and recipients. Using single-genome sequencing (SGS) of plasma vRNA, we found that inferred T/F sequences in recipients were identical to viral sequences in their respective donors. Early in infection, HCV genomes generally evolved according to a simple model of random evolution where the coalescent corresponded to the T/F sequence. Closely related sequence lineages could be explained by high multiplicity infection from a donor whose viral sequences had undergone a pretransmission bottleneck due to treatment, immune selection, or recent infection. These findings validate SGS, together with mathematical modeling and phylogenetic analysis, as a novel strategy to infer T/F HCV genome sequences. IMPORTANCE: Despite the recent development of highly effective, interferon-sparing anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and the development of an effective vaccine, which could be facilitated by a precise molecular identification of transmitted/founder (T/F) viral genomes and their progeny. We used single-genome sequencing to show that inferred HCV T/F sequences in recipients were identical to viral sequences in their respective donors and that viral genomes generally evolved early in infection according to a simple model of random sequence evolution. Altogether, the findings validate T/F genome inferences and illustrate how T/F sequence identification can illuminate studies of HCV transmission, immunopathogenesis, drug resistance development, and vaccine protection, including sieving effects on breakthrough virus strains.


Assuntos
Variação Genética , Hepacivirus/classificação , Hepacivirus/genética , Hepatite C/transmissão , Transplante de Fígado/efeitos adversos , Doadores de Tecidos , Transplantados , Animais , Análise por Conglomerados , Genoma Viral , Genótipo , Técnicas de Genotipagem , Hepacivirus/isolamento & purificação , Hepatite C/veterinária , Hepatite C/virologia , Humanos , Modelos Teóricos , Dados de Sequência Molecular , Pan troglodytes , Filogenia , Análise de Sequência de DNA , Homologia de Sequência
14.
PLoS Pathog ; 11(8): e1005042, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26237403

RESUMO

HIV-1 mucosal transmission begins with virus or virus-infected cells moving through mucus across mucosal epithelium to infect CD4+ T cells. Although broadly neutralizing antibodies (bnAbs) are the type of HIV-1 antibodies that are most likely protective, they are not induced with current vaccine candidates. In contrast, antibodies that do not neutralize primary HIV-1 strains in the TZM-bl infection assay are readily induced by current vaccine candidates and have also been implicated as secondary correlates of decreased HIV-1 risk in the RV144 vaccine efficacy trial. Here, we have studied the capacity of anti-Env monoclonal antibodies (mAbs) against either the immunodominant region of gp41 (7B2 IgG1), the first constant region of gp120 (A32 IgG1), or the third variable loop (V3) of gp120 (CH22 IgG1) to modulate in vivo rectal mucosal transmission of a high-dose simian-human immunodeficiency virus (SHIV-BaL) in rhesus macaques. 7B2 IgG1 or A32 IgG1, each containing mutations to enhance Fc function, was administered passively to rhesus macaques but afforded no protection against productive clinical infection while the positive control antibody CH22 IgG1 prevented infection in 4 of 6 animals. Enumeration of transmitted/founder (T/F) viruses revealed that passive infusion of each of the three antibodies significantly reduced the number of T/F genomes. Thus, some antibodies that bind HIV-1 Env but fail to neutralize virus in traditional neutralization assays may limit the number of T/F viruses involved in transmission without leading to enhancement of viral infection. For one of these mAbs, gp41 mAb 7B2, we provide the first co-crystal structure in complex with a common cyclical loop motif demonstrated to be critical for infection by other retroviruses.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Proteínas do Envelope Viral/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Imunofluorescência , HIV-1/imunologia , Humanos , Mucosa Intestinal/virologia , Macaca mulatta , Conformação Proteica , Reto , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ressonância de Plasmônio de Superfície , Proteínas do Envelope Viral/química
15.
BMC Genet ; 16: 81, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26170196

RESUMO

BACKGROUND: Demography and environmental adaptation can affect the global distribution of genetic variants and possibly the distribution of disease. Population heterozygosity of single nucleotide polymorphisms has been shown to decrease strongly with distance from Africa and this has been attributed to the effect of serial founding events during the migration of humans out of Africa. Additionally, population allele frequencies have been shown to change due to environmental adaptation. Here, we investigate the relationship of Out-of-Africa migration and climatic variables to the distribution of risk alleles for 21 diseases. RESULTS: For each disease, we computed the regression of average heterozygosity and average allele frequency of the risk alleles with distance from Africa and 9 environmental variables. We compared these regressions to a null distribution created by regressing statistics for SNPs not associated with disease on distance from Africa and these environmental variables. Additionally, we used Bayenv 2.0 to assess the signal of environmental adaptation associated with individual risk SNPs. For those SNPs in HGDP and HapMap that are risk alleles for type 2 diabetes, we cannot reject that their distribution is as expected from Out-of-Africa migration. However, the allelic statistics for many other diseases correlate more closely with environmental variables than would be expected from the serial founder effect and show signals of environmental adaptation. We report strong environmental interactions with several autoimmune diseases, and note a particularly strong interaction between asthma and summer humidity. Additionally, we identified several risk genes with strong environmental associations. CONCLUSIONS: For most diseases, migration does not explain the distribution of risk alleles and the worldwide pattern of allele frequencies for some diseases may be better explained by environmental associations, which suggests that some selection has acted on these diseases.


Assuntos
Alelos , Clima , Frequência do Gene , Interação Gene-Ambiente , Estudos de Associação Genética , Predisposição Genética para Doença , Migração Humana , Adaptação Biológica , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Meio Ambiente , Evolução Molecular , Heterozigoto , Humanos , Polimorfismo de Nucleotídeo Único
16.
Hum Genomics ; 8: 1, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24405978

RESUMO

BACKGROUND: Phenotypic variation along environmental gradients has been documented among and within many species, and in some cases, genetic variation has been shown to be associated with these gradients. Bayenv is a relatively new method developed to detect patterns of polymorphisms associated with environmental gradients. Using a Bayesian Markov Chain Monte Carlo (MCMC) approach, Bayenv evaluates whether a linear model relating population allele frequencies to environmental variables is more probable than a null model based on observed frequencies of neutral markers. Although this method has been used to detect environmental adaptation in a number of species, including humans, plants, fish, and mosquitoes, stability between independent runs of this MCMC algorithm has not been characterized. In this paper, we explore the variability of results between runs and the factors contributing to it. RESULTS: Independent runs of the Bayenv program were carried out using genome-wide single-nucleotide polymorphism (SNP) data from samples from 60 worldwide human populations following previous applications of the Bayenv method. To assess factors contributing to the method's stability, we used varying numbers of MCMC iterations and also analyzed a second modified data set that excluded two Siberian populations with extreme climate variables. Between any two runs, correlations between Bayes factors and the overlap of SNPs in the empirical p value tails were surprisingly low. Enrichments of genic versus non-genic SNPs in the empirical tails were more robust than the empirical p values; however, the significance of the enrichments for some environmental variables still varied among runs, contradicting previously published conclusions. Runs with a greater number of MCMC iterations slightly reduced run-to-run variability, and excluding the Siberian populations did not have a large effect on the stability of the runs. CONCLUSIONS: Because of high run-to-run variability, we advise against making conclusions about genome-wide patterns of adaptation based on only one run of the Bayenv algorithm and recommend caution in interpreting previous studies that have used only one run. Moving forward, we suggest carrying out multiple independent runs of Bayenv and averaging Bayes factors between runs to produce more stable and reliable results. With these modifications, future discoveries of environmental adaptation within species using the Bayenv method will be more accurate, interpretable, and easily compared between studies.


Assuntos
Teorema de Bayes , Estudo de Associação Genômica Ampla , Cadeias de Markov , Método de Monte Carlo , Meio Ambiente , Frequência do Gene , Variação Genética , Genoma Humano , Humanos , Polimorfismo de Nucleotídeo Único/genética , População
17.
J Infect Dis ; 208(10): 1598-603, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24023257

RESUMO

Trials of human immunodeficiency virus type 1 (HIV) pre- and postexposure prophylaxis show promise. Here, we describe a novel strategy for deciphering mechanisms of prophylaxis failure that could improve therapeutic outcomes. A healthcare worker began antiretroviral prophylaxis immediately after a high-risk needlestick injury but nonetheless became viremic 11 weeks later. Single-genome sequencing of plasma viral RNA identified 15 drug susceptible transmitted/founder HIV genomes responsible for productive infection. Sequences emanating from these genomes exhibited extremely low diversity, suggesting virus sequestration as opposed to low-level replication as the cause of breakthrough infection. Identification of transmitted/founder viruses allows for genome-wide assessment of molecular mechanisms of prophylaxis failure.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Genoma Viral , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-1/genética , Pré-Medicação , Farmacorresistência Viral/genética , Feminino , Infecções por HIV/diagnóstico , Infecções por HIV/prevenção & controle , HIV-1/classificação , Humanos , Pessoa de Meia-Idade , Mutação , Filogenia , RNA Viral , Análise de Sequência de DNA , Falha de Tratamento
18.
PLoS Pathog ; 8(8): e1002880, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927816

RESUMO

A precise molecular identification of transmitted hepatitis C virus (HCV) genomes could illuminate key aspects of transmission biology, immunopathogenesis and natural history. We used single genome sequencing of 2,922 half or quarter genomes from plasma viral RNA to identify transmitted/founder (T/F) viruses in 17 subjects with acute community-acquired HCV infection. Sequences from 13 of 17 acute subjects, but none of 14 chronic controls, exhibited one or more discrete low diversity viral lineages. Sequences within each lineage generally revealed a star-like phylogeny of mutations that coalesced to unambiguous T/F viral genomes. Numbers of transmitted viruses leading to productive clinical infection were estimated to range from 1 to 37 or more (median = 4). Four acutely infected subjects showed a distinctly different pattern of virus diversity that deviated from a star-like phylogeny. In these cases, empirical analysis and mathematical modeling suggested high multiplicity virus transmission from individuals who themselves were acutely infected or had experienced a virus population bottleneck due to antiviral drug therapy. These results provide new quantitative and qualitative insights into HCV transmission, revealing for the first time virus-host interactions that successful vaccines or treatment interventions will need to overcome. Our findings further suggest a novel experimental strategy for identifying full-length T/F genomes for proteome-wide analyses of HCV biology and adaptation to antiviral drug or immune pressures.


Assuntos
Genoma Viral/genética , Hepacivirus/fisiologia , Hepatite C/genética , Hepatite C/transmissão , Interações Hospedeiro-Patógeno , RNA Viral/genética , Análise de Sequência de RNA , Doença Aguda , Feminino , Genoma Viral/imunologia , Hepatite C/imunologia , Humanos , Masculino , RNA Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA