Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
New Phytol ; 242(1): 247-261, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358035

RESUMO

Effector genes, encoding molecules involved in disease establishment, are concertedly expressed throughout the lifecycle of plant-pathogenic fungi. However, little is known about how effector gene expression is regulated. Since many effector genes are located in repeat-rich regions, the role of chromatin remodeling in their regulation was recently investigated, notably establishing that the repressive histone modification H3K9me3, deposited by KMT1, was involved in several fungal species including Leptosphaeria maculans. Nevertheless, previous data suggest that a second regulatory layer, probably involving a specific transcription factor (TF), might be required. In L. maculans, a Dothideomycete causing stem canker of oilseed rape, we identified the ortholog of Pf2, a TF belonging to the Zn2Cys6 fungal-specific family, and described as essential for pathogenicity and effector gene expression. We investigated its role together with KMT1, by inactivating and over-expressing LmPf2 in a wild-type strain and a ∆kmt1 mutant. Functional analyses of the corresponding transformants highlighted an essential role of LmPf2 in the establishment of pathogenesis and we found a major effect of LmPf2 on the induction of effector gene expression once KMT1 repression is lifted. Our results show, for the first time, a dual control of effector gene expression.


Assuntos
Ascomicetos , Brassica napus , Leptosphaeria , Ascomicetos/fisiologia , Brassica napus/genética , Virulência/genética , Expressão Gênica , Doenças das Plantas/microbiologia
2.
Mol Plant Pathol ; 24(8): 914-931, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37128172

RESUMO

Fungal effectors (small-secreted proteins) have long been considered as species or even subpopulation-specific. The increasing availability of high-quality fungal genomes and annotations has allowed the identification of trans-species or trans-genera families of effectors. Two avirulence effectors, AvrLm10A and AvrLm10B, of Leptosphaeria maculans, the fungus causing stem canker of oilseed rape, are members of such a large family of effectors. AvrLm10A and AvrLm10B are neighbouring genes, organized in divergent transcriptional orientation. Sequence searches within the L. maculans genome showed that AvrLm10A/AvrLm10B belong to a multigene family comprising five pairs of genes with a similar tail-to-tail organization. The two genes, in a pair, always had the same expression pattern and two expression profiles were distinguished, associated with the biotrophic colonization of cotyledons and/or petioles and stems. Of the two protein pairs further investigated, AvrLm10A_like1/AvrLm10B_like1 and AvrLm10A_like2/AvrLm10B_like2, the second one had the ability to physically interact, similarly to what was previously described for the AvrLm10A/AvrLm10B pair, and cross-interactions were also detected for two pairs. AvrLm10A homologues were identified in more than 30 Dothideomycete and Sordariomycete plant-pathogenic fungi. One of them, SIX5, is an effector from Fusarium oxysporum f. sp. lycopersici physically interacting with the avirulence effector Avr2. We found that AvrLm10A/SIX5 homologues were associated with at least eight distinct putative effector families, suggesting that AvrLm10A/SIX5 is able to cooperate with different effectors. These results point to a general role of the AvrLm10A/SIX5 proteins as "cooperating proteins", able to interact with diverse families of effectors whose encoding gene is co-regulated with the neighbouring AvrLm10A homologue.


Assuntos
Ascomicetos , Brassica napus , Fusarium , Ascomicetos/genética , Fusarium/genética , Proteínas/genética , Brassica napus/microbiologia , Família Multigênica , Doenças das Plantas/microbiologia
3.
PLoS Pathog ; 18(7): e1010664, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35793393

RESUMO

Recognition of a pathogen avirulence (AVR) effector protein by a cognate plant resistance (R) protein triggers a set of immune responses that render the plant resistant. Pathogens can escape this so-called Effector-Triggered Immunity (ETI) by different mechanisms including the deletion or loss-of-function mutation of the AVR gene, the incorporation of point mutations that allow recognition to be evaded while maintaining virulence function, and the acquisition of new effectors that suppress AVR recognition. The Dothideomycete Leptosphaeria maculans, causal agent of oilseed rape stem canker, is one of the few fungal pathogens where suppression of ETI by an AVR effector has been demonstrated. Indeed, AvrLm4-7 suppresses Rlm3- and Rlm9-mediated resistance triggered by AvrLm3 and AvrLm5-9, respectively. The presence of AvrLm4-7 does not impede AvrLm3 and AvrLm5-9 expression, and the three AVR proteins do not appear to physically interact. To decipher the epistatic interaction between these L. maculans AVR effectors, we determined the crystal structure of AvrLm5-9 and obtained a 3D model of AvrLm3, based on the crystal structure of Ecp11-1, a homologous AVR effector candidate from Fulvia fulva. Despite a lack of sequence similarity, AvrLm5-9 and AvrLm3 are structural analogues of AvrLm4-7 (structure previously characterized). Structure-informed sequence database searches identified a larger number of putative structural analogues among L. maculans effector candidates, including the AVR effector AvrLmS-Lep2, all produced during the early stages of oilseed rape infection, as well as among effector candidates from other phytopathogenic fungi. These structural analogues are named LARS (for Leptosphaeria AviRulence and Suppressing) effectors. Remarkably, transformants of L. maculans expressing one of these structural analogues, Ecp11-1, triggered oilseed rape immunity in several genotypes carrying Rlm3. Furthermore, this resistance could be suppressed by AvrLm4-7. These results suggest that Ecp11-1 shares a common activity with AvrLm3 within the host plant which is detected by Rlm3, or that the Ecp11-1 structure is sufficiently close to that of AvrLm3 to be recognized by Rlm3.


Assuntos
Brassica napus , Doenças das Plantas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Virulência/genética
4.
New Phytol ; 223(1): 397-411, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30802965

RESUMO

Interactions between Leptosphaeria maculans, causal agent of stem canker of oilseed rape, and its Brassica hosts are models of choice to explore the multiplicity of 'gene-for-gene' complementarities and how they diversified to increased complexity in the course of plant-pathogen co-evolution. Here, we support this postulate by investigating the AvrLm10 avirulence that induces a resistance response when recognized by the Brassica nigra resistance gene Rlm10. Using genome-assisted map-based cloning, we identified and cloned two AvrLm10 candidates as two genes in opposite transcriptional orientation located in a subtelomeric repeat-rich region of the genome. The AvrLm10 genes encode small secreted proteins and show expression profiles in planta similar to those of all L. maculans avirulence genes identified so far. Complementation and silencing assays indicated that both genes are necessary to trigger Rlm10 resistance. Three assays for protein-protein interactions showed that the two AvrLm10 proteins interact physically in vitro and in planta. Some avirulence genes are recognized by two distinct resistance genes and some avirulence genes hide the recognition specificities of another. Our L. maculans model illustrates an additional case where two genes located in opposite transcriptional orientation are necessary to induce resistance. Interestingly, orthologues exist for both L. maculans genes in other phytopathogenic species, with a similar genome organization, which may point to an important conserved effector function linked to heterodimerization of the two proteins.


Assuntos
Ascomicetos/genética , Brassica napus/genética , Brassica napus/microbiologia , Epistasia Genética , Ascomicetos/patogenicidade , Sequência Conservada/genética , DNA Intergênico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Loci Gênicos , Genoma Fúngico , Fenótipo , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Ligação Proteica , Sinais Direcionadores de Proteínas , Virulência
5.
New Phytol ; 209(4): 1613-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26592855

RESUMO

Extending the durability of plant resistance genes towards fungal pathogens is a major challenge. We identified and investigated the relationship between two avirulence genes of Leptosphaeria maculans, AvrLm3 and AvrLm4-7. When an isolate possesses both genes, the Rlm3-mediated resistance of oilseed rape (Brassica napus) is not expressed due to the presence of AvrLm4-7 but virulent isolates toward Rlm7 recover the AvrLm3 phenotype. Combining genetic and genomic approaches (genetic mapping, RNA-seq, BAC (bacterial artificial chromosome) clone sequencing and de novo assembly) we cloned AvrLm3, a telomeric avirulence gene of L. maculans. AvrLm3 is located in a gap of the L. maculans reference genome assembly, is surrounded by repeated elements, encodes for a small secreted cysteine-rich protein and is highly expressed at early infection stages. Complementation and silencing assays validated the masking effect of AvrLm4-7 on AvrLm3 recognition by Rlm3 and we showed that the presence of AvrLm4-7 does not impede AvrLm3 expression in planta. Y2H assays suggest the absence of physical interaction between the two avirulence proteins. This unusual interaction is the basis for field experiments aiming to evaluate strategies that increase Rlm7 durability.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Genes Fúngicos , Sequência de Aminoácidos , Sequência de Bases , Brassica napus/genética , Brassica napus/microbiologia , Cromossomos Artificiais Bacterianos/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes de Plantas , Loci Gênicos , Anotação de Sequência Molecular , Desnaturação de Ácido Nucleico , Fenótipo , Mapeamento Físico do Cromossomo , Doenças das Plantas/microbiologia , Polimorfismo Genético , Ligação Proteica , Reprodutibilidade dos Testes , Virulência/genética
6.
Plant J ; 83(4): 610-24, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26082394

RESUMO

The avirulence gene AvrLm4-7 of Leptosphaeria maculans, the causal agent of stem canker in Brassica napus (oilseed rape), confers a dual specificity of recognition by two resistance genes (Rlm4 and Rlm7) and is strongly involved in fungal fitness. In order to elucidate the biological function of AvrLm4-7 and understand the specificity of recognition by Rlm4 and Rlm7, the AvrLm4-7 protein was produced in Pichia pastoris and its crystal structure was determined. It revealed the presence of four disulfide bridges, but no close structural analogs could be identified. A short stretch of amino acids in the C terminus of the protein, (R/N)(Y/F)(R/S)E(F/W), was well-conserved among AvrLm4-7 homologs. Loss of recognition of AvrLm4-7 by Rlm4 is caused by the mutation of a single glycine to an arginine residue located in a loop of the protein. Loss of recognition by Rlm7 is governed by more complex mutational patterns, including gene loss or drastic modifications of the protein structure. Three point mutations altered residues in the well-conserved C-terminal motif or close to the glycine involved in Rlm4-mediated recognition, resulting in the loss of Rlm7-mediated recognition. Transient expression in Nicotiana benthamiana (tobacco) and particle bombardment experiments on leaves from oilseed rape suggested that AvrLm4-7 interacts with its cognate R proteins inside the plant cell, and can be translocated into plant cells in the absence of the pathogen. Translocation of AvrLm4-7 into oilseed rape leaves is likely to require the (R/N)(Y/F)(R/S)E(F/W) motif as well as an RAWG motif located in a nearby loop that together form a positively charged region.


Assuntos
Ascomicetos/patogenicidade , Brassica napus/metabolismo , Brassica napus/microbiologia , Proteínas Fúngicas/metabolismo , Doenças das Plantas/microbiologia , Virulência/genética
7.
G3 (Bethesda) ; 2(8): 891-904, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22908038

RESUMO

The ever-increasing generation of sequence data is accompanied by unsatisfactory functional annotation, and complex genomes, such as those of plants and filamentous fungi, show a large number of genes with no predicted or known function. For functional annotation of unknown or hypothetical genes, the production of collections of mutants using Agrobacterium tumefaciens-mediated transformation (ATMT) associated with genotyping and phenotyping has gained wide acceptance. ATMT is also widely used to identify pathogenicity determinants in pathogenic fungi. A systematic analysis of T-DNA borders was performed in an ATMT-mutagenized collection of the phytopathogenic fungus Leptosphaeria maculans to evaluate the features of T-DNA integration in its particular transposable element-rich compartmentalized genome. A total of 318 T-DNA tags were recovered and analyzed for biases in chromosome and genic compartments, existence of CG/AT skews at the insertion site, and occurrence of microhomologies between the T-DNA left border (LB) and the target sequence. Functional annotation of targeted genes was done using the Gene Ontology annotation. The T-DNA integration mainly targeted gene-rich, transcriptionally active regions, and it favored biological processes consistent with the physiological status of a germinating spore. T-DNA integration was strongly biased toward regulatory regions, and mainly promoters. Consistent with the T-DNA intranuclear-targeting model, the density of T-DNA insertion correlated with CG skew near the transcription initiation site. The existence of microhomologies between promoter sequences and the T-DNA LB flanking sequence was also consistent with T-DNA integration to host DNA mediated by homologous recombination based on the microhomology-mediated end-joining pathway.


Assuntos
Ascomicetos/genética , Cromossomos/metabolismo , DNA Bacteriano/metabolismo , Genoma , Cromossomos/química , DNA Bacteriano/química , Plantas/microbiologia , Regiões Promotoras Genéticas , Alinhamento de Sequência
8.
Electrophoresis ; 30(23): 4118-36, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19960477

RESUMO

The secreted proteins (secretome) of fungi play a key role in interactions of pathogenic and symbiotic fungi with plants. Using the plant pathogenic fungus Leptosphaeria maculans and symbiont Laccaria bicolor grown in culture, we have established a proteomic protocol for extraction, concentration and resolution of the fungal secretome. As no proteomic data were available on mycelium tissues from both L. maculans and L. bicolor, mycelial proteins were studied; they also helped verifying the purity of secretome samples. The quality of protein extracts was initially assessed by both 1-DE and 2-DE using first a broad pH range for IEF, and then narrower acidic and basic pH ranges, prior to 2-DE. Compared with the previously published protocols for which only dozens of 2-D spots were recovered from fungal secretome samples, up to approximately 2000 2-D spots were resolved by our method. MS identification of proteins along several pH gradients confirmed this high resolution, as well as the presence of major secretome markers such as endopolygalacturonases, beta-glucanosyltransferases, pectate lyases and endoglucanases. Shotgun proteomic experiments evidenced the enrichment of secreted protein within the liquid medium. This is the first description of the proteome of L. maculans and L. bicolor, and the first application of liquid-phase IEF to any fungal extracts.


Assuntos
Eletroforese em Gel Bidimensional/métodos , Proteínas Fúngicas/análise , Focalização Isoelétrica/métodos , Proteômica/métodos , Ascomicetos/química , Diálise , Liofilização , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Laccaria/química , Micélio/química , Fragmentos de Peptídeos/análise , Mapeamento de Peptídeos , Reprodutibilidade dos Testes
9.
Mol Microbiol ; 71(4): 851-63, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19170874

RESUMO

Leptosphaeria maculans is the ascomycete responsible for one of the most damaging diseases of oilseed rape (Brassica napus), stem canker of crucifers. Both avirulence (AvrLm) genes in the fungus and resistance (Rlm) genes in the plant are genetically clustered. Using a map-based cloning strategy, we delineated a 238 kb region containing the AvrLm7 locus. Structural features of the region were reminiscent of those previously found on another chromosome for genomic regions encompassing AvrLm1 and AvrLm6, i.e. GC-equilibrated, gene-rich isochores alternating with AT-rich, recombination-deficient, gene-poor isochores. These latter corresponded to mosaics of degenerated and truncated transposable elements. AvrLm7 is the only gene located within a 60 kb AT-rich isochore. It induced resistance responses in plants harbouring either Rlm7 or Rlm4, and was thus renamed AvrLm4-7. It encodes a 143-amino-acid cysteine-rich protein, predicted to be secreted, and strongly induced during early stages of plant infection. Sequencing and restriction analyses of AvrLm4-AvrLm7 or avrLm4-AvrLm7 alleles in L. maculans field isolates, and targeted point mutagenesis strongly suggested that one single base mutation, leading to the change of a glycine to an arginine residue, was responsible for the loss of AvrLm4 specificity whereas AvrLm7 recognition was unaltered.


Assuntos
Substituição de Aminoácidos , Ascomicetos/genética , Brassica napus/microbiologia , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Ascomicetos/metabolismo , Ascomicetos/patogenicidade , Sequência de Bases , Passeio de Cromossomo , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Teste de Complementação Genética , Imunidade Inata , Dados de Sequência Molecular , Família Multigênica , Mutagênese Sítio-Dirigida , Fenótipo , Mapeamento Físico do Cromossomo , Mutação Puntual , Polimorfismo de Nucleotídeo Único , RNA Fúngico/genética , Análise de Sequência de DNA , Virulência/genética
10.
Fungal Genet Biol ; 45(7): 1122-34, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18538267

RESUMO

Following Agrobacterium tumefaciens-mediated mutagenesis in Leptosphaeria maculans, we identified the mutant 210, displaying total loss of pathogenicity towards its host plant (Brassica napus). Microscopic observations showed that m210 is unable to germinate on the host leaf surface and is thus blocked at the pre-penetration stage. The pathogenicity phenotype is linked with a single T-DNA insertion into the promoter region of a typical plasma membrane H(+)-ATPase-encoding gene, termed Lmpma1, thus leading to a twofold reduction in Lmpma1 expression. Since LmPMA1 is involved in intracellular pH homeostasis, we postulate that reduction in LmPMA1 activity disturbs the electrochemical transmembrane gradient in m210, thus leading to conidia defective in turgor pressure generation on leaf surface. Whole genome survey showed that L. maculans possesses a second plasma membrane H(+)-ATPase-encoding gene, termed Lmpma2. Silencing experiments, expression analyses and phylogenetic studies allowed us to highlight the essential role assumed by the Lmpma1 isoform in L.maculans pathogenicity.


Assuntos
Ascomicetos/enzimologia , Ascomicetos/patogenicidade , Brassica napus/microbiologia , Membrana Celular/enzimologia , Doenças das Plantas/microbiologia , ATPases Translocadoras de Prótons/metabolismo , Sequência de Aminoácidos , Ascomicetos/classificação , Ascomicetos/fisiologia , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Mutagênese Insercional , Fenótipo , Filogenia , Regiões Promotoras Genéticas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/genética , Esporos Fúngicos/crescimento & desenvolvimento
11.
New Phytol ; 179(4): 1105-1120, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18557818

RESUMO

Random insertional mutagenesis was used to investigate pathogenicity determinants in Leptosphaeria maculans. One tagged nonpathogenic mutant, termed m20, was analysed in detail here. The mutant phenotype was investigated by microscopic analyses of infected plant tissues and in vitro growth assays. Complementation and silencing experiments were used to identify the altered gene. Its function was determined by bioinformatics analyses, cell biology experiments and functional studies. The mutant was blocked at the invasive growth phase after an unaffected initial penetration stage, and displayed a reduced growth rate and an aberrant hyphal morphology in vitro. The T-DNA insertion occurred in the intergenic region between two head-to-tail genes, leading to a complex deregulation of their expression. The unique gene accounting for the mutant phenotype was suggested to be the orthologue of the poorly conserved Saccharomyces cerevisiae gpi15, which encodes for one component of the glycosylphosphatidylinositol (GPI) anchor biosynthesis pathway. Consistent with this predicted function, a functional translational fusion with the green fluorescent protein (GFP) was targeted to the endoplasmic reticulum. Moreover, the mutant exhibited an altered cell wall and addition of glucosamine relieved growth defects. It is concluded that the GPI anchor biosynthetic pathway is required for morphogenesis, cell wall integrity and pathogenicity in Leptosphaeria maculans.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Glicosilfosfatidilinositóis/biossíntese , Morfogênese/genética , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/patogenicidade , Brassica/microbiologia , Parede Celular/genética , Retículo Endoplasmático/química , Proteínas Fúngicas/química , Proteínas Fúngicas/fisiologia , Expressão Gênica , Inativação Gênica , Glicosilfosfatidilinositóis/genética , Proteínas de Fluorescência Verde/análise , Proteínas de Membrana/química , Mutagênese Insercional , Pressão Osmótica , Fenótipo , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/análise , Proteínas de Saccharomyces cerevisiae/química
12.
Fungal Genet Biol ; 44(2): 123-38, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16979359

RESUMO

We evaluated the usefulness and robustness of Agrobacterium tumefaciens-mediated transformation (ATMT) as a high-throughput transformation tool for pathogenicity gene discovery in the filamentous phytopathogen Leptosphaeria maculans. Thermal asymmetric interlaced polymerase chain reaction allowed us to amplify the left border (LB) flanking sequence in 135 of 400 transformants analysed, and indicated a high level of preservation of the T-DNA LB. In addition, T-DNA preferentially integrated as a single copy in gene-rich regions of the fungal genome, with a probable bias towards intergenic and/or regulatory regions. A total of 53 transformants out of 1388 (3.8%) showed reproducible pathogenicity defects when inoculated on cotyledons of Brassica napus, with diverse altered phenotypes. Co-segregation of the altered phenotype with the T-DNA integration was observed for 6 of 12 transformants crossed. If extrapolated to the whole collection, this indicates that 1.9% of the collection actually corresponds to tagged pathogenicity mutants. The preferential insertion into gene-rich regions along with the high ratio of tagged mutants renders ATMT a tool of choice for large-scale gene discovery in L. maculans.


Assuntos
Agrobacterium tumefaciens/genética , Ascomicetos/genética , Ascomicetos/patogenicidade , Doenças das Plantas/microbiologia , Transformação Bacteriana/genética , Sequência de Bases , Dados de Sequência Molecular , Fenótipo , Reação em Cadeia da Polimerase/métodos
13.
Mol Microbiol ; 60(1): 67-80, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16556221

RESUMO

Leptosphaeria maculans, a Dothideomycete causing stem canker on oilseed rape (Brassica napus), develops gene-for-gene interactions with its host plants. To date, nine resistance genes (Rlm1-9) have been identified in Brassica spp. The corresponding nine avirulence genes (AvrLm1-9) in L. maculans have been mapped at four independent loci, thereby revealing two clusters of three and four linked avirulence genes. Here, we report the completion of map-based cloning of AvrLm1. AvrLm1 was genetically delineated within a 7.3 centimorgan interval corresponding to a 439 kb BAC contig. AvrLm1 is a single copy gene isolated within a 269 kb non-coding, heterochromatin-like region. The region comprised a number of degenerated, nested copies of four long-terminal repeat (LTR) retrotransposons, including Pholy and three novel Gypsy-like retrotransposons. AvrLm1 restored the avirulent phenotype on Rlm1 cultivars following functional complementation of virulent isolates. AvrLm1 homologues were not detected in other Leptosphaeria species or in known fungal genomes including the closely related species Stagonospora nodorum. The predicted AvrLm1 protein is composed of 205 amino acids, of which only one is a cysteine residue. It contains a peptide signal suggesting extracellular localization. Unlike most other fungal avirulence genes, AvrLm1 is constitutively expressed, with a probable increased level of expression upon plant infection, suggesting the absence of tight regulation of AvrLm1 expression.


Assuntos
Ascomicetos/patogenicidade , Brassica napus/microbiologia , Proteínas Fúngicas/genética , Doenças das Plantas/microbiologia , Ascomicetos/genética , Passeio de Cromossomo , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA , Virulência/genética
14.
Curr Genet ; 47(1): 37-48, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15614492

RESUMO

Leptosphaeria maculans causes phoma stem canker, the most serious disease of oilseed rape world-wide. Sexual recombination is important in the pathogen life cycle and increases the risk of plant resistance genes being overcome rapidly. Thus, there is a need to develop easy-to-use molecular markers suitable for large-scale population genetic studies. The minisatellite MinLm1, showing six alleles in natural populations, has previously been used as a marker to survey populations. Here, we report the characterization of five new minisatellites (MinLm2-MinLm6), of which four were identified by a systematic search for tandemly repeated polymorphic regions in BAC-end sequencing data from L. maculans. Of 782 BAC-end sequences analysed, 43 possessed putative minisatellite-type repeats and four of these (MinLm3-MinLm6) displayed both consistent PCR amplification and size polymorphism in a collection of L. maculans isolates of diverse origins. Cloning and sequencing of each allele confirmed that polymorphism was due to variation in the repeat number of a core motif ranging from 11 bp (MinLm3) to 51 bp (MinLm4). The number of alleles found for each minisatellite ranged from three (MinLm4) to nine (MinLm2), with eight, five and six for MinLm3, MinLm5 and MinLm6, respectively. MinLm2-MinLm6 are all single locus markers specific to L. maculans and share some common features, such as conservation of core motifs and incomplete direct repeats in the flanking regions. To our knowledge, L. maculans is the first fungal species for which six polymorphic single locus minisatellite markers have been reported.


Assuntos
Ascomicetos/genética , Ascomicetos/patogenicidade , Marcadores Genéticos , Repetições Minissatélites/genética , Polimorfismo Genético , Brassica rapa/microbiologia , Genética Populacional , Sequências de Repetição em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA