Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pathol Inform ; 15: 100376, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38736870

RESUMO

Background: The adoption of digital pathology has transformed the field of pathology, however, the economic impact and cost analysis of implementing digital pathology solutions remain a critical consideration for institutions to justify. Digital pathology implementation requires a thorough evaluation of associated costs and should identify and optimize resource allocation to facilitate informed decision-making. A dynamic cost calculator to estimate the financial implications of deploying digital pathology systems was needed to estimate the financial effects on transitioning to a digital workflow. Methods: A systematic approach was used to comprehensively assess the various components involved in implementing and maintaining a digital pathology system. This consisted of: (1) identification of key cost categories associated with digital pathology implementation; (2) data collection and analysis of cost estimation; (3) cost categorization and quantification of direct and indirect costs associated with different use cases, allowing customization of each factor based on specific intended uses and market rates, industry standards, and regional variations; (4) opportunities for savings realized by digitization of glass slides and (5) integration of the cost calculator into a unified framework for a holistic view of the financial implications associated with digital pathology implementation. The online tool enables the user to test various scenarios specific to their institution and provides adjustable parameters to assure organization specific relatability. Results: The Digital Pathology Association has developed a web-based calculator as a companion tool to provide an exhaustive list of the necessary concepts needed when assessing the financial implications of transitioning to a digital pathology system. The dynamic return on investment (ROI) calculator successfully integrated relevant cost and cost-saving components associated with digital pathology implementation and maintenance. Considerations include factors such as digital pathology infrastructure, clinical operations, staffing, hardware and software, information technology, archive and retrieval, medical-legal, and potential reimbursements. The ROI calculator developed for digital pathology workflows offers a comprehensive, customizable tool for institutions to assess their anticipated upfront and ongoing annual costs as they start or expand their digital pathology journey. It also offers cost-savings analysis based on specific user case volume, institutional geographic considerations, and actual costs. In addition, the calculator also serves as a tool to estimate number of required whole slide scanners, scanner throughput, and data storage (TB). This tool is intended to estimate the potential costs and cost savings resulting from the transition to digital pathology for business plan justifications and return on investment calculations. Conclusions: The digital pathology online cost calculator provides a comprehensive and reliable means of estimating the financial implications associated with implementing and maintaining a digital pathology system. By considering various cost factors and allowing customization based on institution-specific variables, the calculator empowers pathology laboratories, healthcare institutions, and administrators to make informed decisions and optimize resource allocation when adopting or expanding digital pathology technologies. The ROI calculator will enable healthcare institutions to assess the financial feasibility and potential return on investment on adopting digital pathology, facilitating informed decision-making and resource allocation.

2.
J Pathol Inform ; 11: 22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042601

RESUMO

Unlocking the full potential of pathology data by gaining computational access to histological pixel data and metadata (digital pathology) is one of the key promises of computational pathology. Despite scientific progress and several regulatory approvals for primary diagnosis using whole-slide imaging, true clinical adoption at scale is slower than anticipated. In the U.S., advances in digital pathology are often siloed pursuits by individual stakeholders, and to our knowledge, there has not been a systematic approach to advance the field through a regulatory science initiative. The Alliance for Digital Pathology (the Alliance) is a recently established, volunteer, collaborative, regulatory science initiative to standardize digital pathology processes to speed up innovation to patients. The purpose is: (1) to account for the patient perspective by including patient advocacy; (2) to investigate and develop methods and tools for the evaluation of effectiveness, safety, and quality to specify risks and benefits in the precompetitive phase; (3) to help strategize the sequence of clinically meaningful deliverables; (4) to encourage and streamline the development of ground-truth data sets for machine learning model development and validation; and (5) to clarify regulatory pathways by investigating relevant regulatory science questions. The Alliance accepts participation from all stakeholders, and we solicit clinically relevant proposals that will benefit the field at large. The initiative will dissolve once a clinical, interoperable, modularized, integrated solution (from tissue acquisition to diagnostic algorithm) has been implemented. In times of rapidly evolving discoveries, scientific input from subject-matter experts is one essential element to inform regulatory guidance and decision-making. The Alliance aims to establish and promote synergistic regulatory science efforts that will leverage diverse inputs to move digital pathology forward and ultimately improve patient care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA