Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 42, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326819

RESUMO

BACKGROUND: The Lactobacillaceae family comprises many species of great importance for the food and healthcare industries, with numerous strains identified as beneficial for humans and used as probiotics. Hence, there is a growing interest in engineering these probiotic bacteria as live biotherapeutics for animals and humans. However, the genetic parts needed to regulate gene expression in these bacteria remain limited compared to model bacteria like E. coli or B. subtilis. To address this deficit, in this study, we selected and tested several bacteriophage-derived genetic parts with the potential to regulate transcription in lactobacilli. RESULTS: We screened genetic parts from 6 different lactobacilli-infecting phages and identified one promoter/repressor system with unprecedented functionality in Lactiplantibacillus plantarum WCFS1. The phage-derived promoter was found to achieve expression levels nearly 9-fold higher than the previously reported strongest promoter in this strain and the repressor was able to almost completely repress this expression by reducing it nearly 500-fold. CONCLUSIONS: The new parts and insights gained from their engineering will enhance the genetic programmability of lactobacilli for healthcare and industrial applications.


Assuntos
Lactobacillus plantarum , Probióticos , Humanos , Animais , Lactobacillus/genética , Lactobacillus/metabolismo , Escherichia coli/genética , Lactobacillus plantarum/metabolismo , Regiões Promotoras Genéticas , Bactérias/genética , Probióticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA