Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Sci Total Environ ; 891: 164464, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37247741

RESUMO

The chemical composition of PM2.5 has a significant impact on human health and air quality, and its accurate knowledge can be used to identify contributing emission sources. Assessing and quantifying the impacts of various factors (e.g., emissions, meteorology, and large-scale climate patterns) on the main PM2.5 chemical components can give guidance for implementing effective regulations to improve air quality in the future. In this study, we developed generalized additive models (GAMs) to assess how emissions, meteorological factors, and large-scale climate indices affected ammonium, sulfate, nitrate, elemental carbon, and organic carbon from 2002 to 2019 in the South Coast Air Basin (SoCAB). Concentration trends from three sites in the SoCAB are studied. The statistical results showed that GAMs can capture the variability of these species' daily concentrations (R2 = 0.6 to 0.7) and annual concentrations (R2 = 0.93 to 0.99). Precursor emissions most significantly affect PM2.5 species production, though meteorological factors like maximum temperature, relative humidity, wind speed, and boundary layer height, also influence PM2.5 composition. In the future, these meteorological factors will become more significant in affecting PM2.5 speciation, although emissions will continue to strongly affect formation. Results show that the composition of most PM2.5 species will decrease in the future except for OC, which will become the largest contributor to PM2.5.

2.
Chemosphere ; 325: 138385, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36921775

RESUMO

Annual fine particulate matter (PM2.5) mass concentrations in the South Coast Air Basin (SoCAB) of California decreased from around 30 µg/m3 to 11 µg/m3 between 2000 and 2013 but rose from 11 µg/m3 to 13 µg/m3 between 2014 and 2018, raising important questions about the effectiveness of ongoing emission control policies. A two-step generalized additive model (GAM)-least squares approach was developed to explore the effects of emissions, large-scale climate events and meteorological factors on daily PM2.5 mass concentrations from 2000 to 2019 to quantitatively link impacts of emissions and meteorological on PM2.5 and to assess factors leading to the increase. The GAM had an R2 = 0.99 and root mean square error (RMSE) = 0.7 µg/m3 for the annual average PM2.5 concentrations. The two-step method had an R2 = 0.93 and RMSE = 4.07 µg/m3 for the 98th percentile 24-hr average PM2.5 concentrations. Variations in both emissions and relative humidity were of high importance compared with other included factors. Interactions of NH3 emissions with NOx and SO2 emissions, which lead to ammonium nitrate and sulfate aerosol formation, were the most important factors. Meteorological effects on PM2.5 explained the majority of the daily PM2.5 fluctuations. Emission changes (increases in SO2 and PM2.5) led to increases in predicted PM2.5 between 2014 and 2018. Predicted future PM2.5, using projected emissions and meteorological data from model simulations of representative concentration pathway (RCP) scenarios, are around 12 µg/m3 (annual) and 30 µg/m3 (98th percentile daily), which are both close to the current National Ambient Air Quality Standards (NAAQS) for PM2.5. Meteorological impacts on the predicted PM2.5 in future years lead to variations of ±2 µg/m3 for the annual average and ±5 µg/m3 for the 98th percentile daily level. Future climate changes lead to a probable year-to-year variation that will let PM2.5 levels in some years exceed the standard.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Nitratos , California , Monitoramento Ambiental/métodos
3.
Environ Pollut ; 307: 119503, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35598815

RESUMO

Ozone levels have been declining in the Los Angeles, CA, USA area for the last four decades, but there was a recent uptick in the 4th highest daily maximum 8-h (MDA8) ozone concentrations from 2014 to 2018 despite continued reductions in the estimated precursor emissions. In this study, we assess the emissions and meteorological impacts on the 4th highest MDA8 ozone concentrations to better understand the factors affecting the observed MDA8 ozone using a two-step generalized additive model (GAM)/least squares approach applied to the South Coast Air Basin (SoCAB) for the 1990 to 2019 period. The GAM model includes emissions, meteorological factors, large-scale climate variables, date, and the interactions between meteorology and emissions. A least squares method was applied to the GAM output to better capture the 4th highest MDA8 ozone. The resulting two-step model had an R2 of 0.98 and a slope of 1 between the observed and predicted 4th highest MDA8 ozone. Emissions and the interactions between the maximum temperature and emissions explain most of the variation in the peak MDA8 ozone concentrations. Declining emissions have lowered the 4th highest MDA8 ozone concentration. Meteorology explains the higher than expected 4th-high, ozone levels observed in 2014-2018, indicating that meteorology was a stronger forcer than the continued reductions in emissions during that time period. The model was applied to estimate future ozone levels. Meteorology developed from climate modeling of the representative concentration pathway (RCP) scenarios, and two sets of emissions were used in the application. The modeling results indicated climate trends will push ozone levels slightly higher if no further emissions reductions are realized and that of two emissions trajectories modeled, the more stringent is required to reliably meet the federal ozone standard given annual meteorological variability.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Los Angeles , Meteorologia , Ozônio/análise
4.
J Air Waste Manag Assoc ; 72(9): 969-984, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35404771

RESUMO

In the Houston-Galveston-Beaumont (HGB) region considerable scientific effort has been directed at elucidating the relationships among atmospheric circulations and urban mixed-layer ozone concentrations. These studies of the HGB region have provided guidance on the conditions that are used herein to identify specific meteorological parameters that relate with observed exceedances of the National Ambient Air Quality Standard for ozone. These parameters were developed using 15 years of ozone concentrations and localized wind conditions enhanced by incorporating data from a private monitoring network. Using these data, several key parameters were found that described the most common meteorological conditions for an exceedance day in HGB. The most relevant parameters included: the wind direction at midnight, wind speeds from 0 to 6 LST, and the extent of wind direction rotation in a 24-hour period. These parameters, and the meteorological conditions they describe, were also found to occur in an analysis of observational data throughout the state of Texas suggesting large scale forces beyond the influence of a sea breeze. A mixed layer model was developed and shown to illustrate the large-scale synoptic forces found in the observational data. The meteorological parameters, and conditions they describe, could be part of a diagnostic model performance evaluation to assure that accurate predictions of ozone for Texas were not the result of compensating errors.Implications: This study identified meteorological-based parameters that coincided with observed exceedances of the National Ambient Air Quality Standard for ozone across the state of Texas. These parameters can be used in support of regulatory model performance evaluations to assure accuracy in predicting ozone conducive conditions. In Houston, the vast majority of meteorlogical ozone conducive days did not produce an exceedance, suggesting other as yet unidentified conditions that are necessary such as an intermittent emission of precursors.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental , Ozônio/análise , Texas
5.
J Air Waste Manag Assoc ; 71(8): 995-1012, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33835900

RESUMO

Fine particle (PM2.5) exposure is a public health issue affecting millions of people worldwide. In New York State, significant emission reductions occurred during the past decades due to fuel switching, increased renewable energy, and transformations in buildings and transportation. Between 2002 and 2018, anthropogenic emissions of CO, NOx, SO2, VOCs, and primary PM2.5 declined by 58%, 61%, 89%, 47%, and 29%, respectively, in New York and three adjoining states. Ambient PM2.5 mass concentrations decreased but contributions of source types to changes in PM2.5 elemental carbon (EC) and organic carbon (OC) are incompletely understood. Receptor modeling was used to estimate changing source contributions to EC and OC in New York City (NYC) between 2007 and 2019. Source identification was facilitated by incorporating measurements of CO, NO, NO2, O3, SO2, and speciated hydrocarbons (1,3-butadiene, n-butane, isobutane, n-pentane, isopentane, isoprene, benzene, toluene, xylenes, acetaldehyde, and formaldehyde). Hydrocarbon species identified mobile-source emissions, evaporative emissions, biogenics, and photochemical secondary organic aerosol. At three study locations, predicted reductions of TC (OC + EC) summed over all source types were 1.3 ± 0.2 µg m-3, compared with a measured TC reduction of 1.5 ± 0.2 µg m-3. Declining sulfate concentrations and cleaner mobile sources together reduced the predicted average TC by a combined 1 µg m-3. Smaller changes occurred in other source contributions, e.g., 0.15 ± 0.01 µg m-3 reduction likely in response to NYC regulations related to heating fuel oil. Biomass burning PM2.5 increased between 2007 and 2011, then declined between 2015 and 2019. Reductions contrast with a non-significant increase of 0.05 µg m-3 in photochemical TC. Further opportunities to decrease PM2.5 concentrations include wood burning and photochemical-related OC. Continued temporal analysis and source apportionment will be needed to track changes in air quality and source contributions as jurisdictions expand renewable energy and energy efficiency goals.Implications: Large emission reductions that occurred in the eastern U.S. between 2002 and 2019 lowered average fine particle concentrations in New York City by a factor of two. Secondary organic aerosol concentrations declined as sulfate decreased but increased non-significantly with rising ozone. Cleaner mobile-source emissions lowered elemental and organic carbon concentrations. Opportunities for further reductions of PM2.5 concentrations include biomass burning and photochemical secondary aerosol.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Monitoramento Ambiental , Humanos , Cidade de Nova Iorque , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
6.
J Air Waste Manag Assoc ; 71(3): 348-365, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33395373

RESUMO

This study examined reactive oxidized nitrogen (NOy) speciation and partitioning at one urban site, Queens College (QC) in New York City, and one rural site, Pinnacle State Park (PSP) in Addison, New York (NY) from September 2016 to August 2018 and June 2016 to September 2018, respectively. Oxides of nitrogen (NOx), nitric acid (HNO3), particle nitrate (pNO3), peroxy nitrates (PNs), alkyl nitrates (ANs), and NOy measurements were made at both sites. Across all seasons at QC, the median NOx, HNO3, pNO3, PNs, ANs, and NOy concentrations were 10.99, 0.49, 0.24, 0.62, 0.94, and 13.95 parts per billion (ppb), respectively. All-season median percent contributions of NOx, HNO3, pNO3, PNs, and ANs to the total NOy at QC were 77, 4, 2, 5, and 7%, respectively. Therefore, the sum of the individual NOy species (NOyi ≈ NOx + HNO3 + pNO3 + PNs + ANs) accounted for 95% of the total NOy at QC, which was well within measurement uncertainties. At PSP, the median NOx, HNO3, pNO3, PNs, ANs, and NOy concentrations were 0.65, 0.16, 0.12, 0.13, 0.18, and 1.56 ppb, respectively, over all seasons. The median percent contributions of NOx, HNO3, pNO3, PNs, and ANs to NOy over all seasons at PSP were 42, 10, 8, 9, and 12%, respectively. NOyi comprised 81% of NOy across all seasons at PSP, and deviations from 100% closure were generally within measurement uncertainties. Since both datasets yielded NOy budget closure results that were either fully or largely explained by the measurement uncertainties, the observed NOyi is likely representative of ambient NOy in urban and rural New York. The results have implications for understanding the fate of NOx emissions and their impact on local and regional air quality in urban and rural New York State.Implications: Continuous speciated and total reactive oxidized nitrogen (NOy) measurements were made in urban and rural New York from 2016 to 2018. Different NOy species have contrasting effects on the chemistry that impacts ozone (O3) and fine particulate matter (PM2.5) formation and concentrations. Since O3 and PM2.5 are regulated pollutants that have proven difficult to control, the results have implications for current and future air quality policy.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Humanos , New York , Nitrogênio/análise , Óxidos de Nitrogênio/análise , Ozônio/análise
7.
Atmos Meas Tech ; 13(6)2020.
Artigo em Inglês | MEDLINE | ID: mdl-34497673

RESUMO

Mobile platform measurements provide new opportunities for characterizing spatial variations of air pollution within urban areas, identifying emission sources, and enhancing knowledge of atmospheric processes. The Aclima, Inc. mobile measurement and data acquisition platform was used to equip four Google Street View cars with research-grade instruments, two of which were available for the duration of this study. On-road measurements of air quality were made during a series of sampling campaigns between May 2016 and September 2017 at high (i.e., 1-second [s]) temporal and spatial resolution at several California locations: Los Angeles, San Francisco, and the northern San Joaquin Valley (including non-urban roads and the cities of Tracy, Stockton, Manteca, Merced, Modesto, and Turlock). The results demonstrate that the approach is effective for quantifying spatial variations of air pollutant concentrations over measurement periods as short as two weeks. Measurement accuracy and precision are evaluated using results of weekly performance checks and periodic audits conducted through the sampler inlets, which show that research instruments located within stationary vehicles are capable of reliably measuring nitric oxide (NO), nitrogen dioxide (NO2), ozone (O3), methane (CH4) black carbon (BC), and particle number (PN) concentration with bias and precision ranging from <10 % for gases to <25 % for BC and PN at 1-s time resolution. The quality of the mobile measurements in the ambient environment is examined by comparisons with data from an adjacent (< 9 m) stationary regulatory air quality monitoring site and by paired collocated vehicle comparisons, both stationary and driving. The mobile measurements indicate that U.S. EPA classifications of two Los Angeles stationary regulatory monitors' scales of representation are appropriate. Paired time-synchronous mobile measurements are used to characterize the spatial scales of concentration variations when vehicles were separated by <1 to 10 kilometers (km). A data analysis approach is developed to characterize spatial variations while limiting the confounding influence of diurnal variability. The approach is illustrated using data from San Francisco, revealing 1-km scale differences in mean NO2 and O3 concentrations up to 117 % and 46 %, respectively, of mean values during a two-week sampling period. In San Francisco and Los Angeles, spatial variations up to factors of 6 to 8 occur at sampling scales of 100 - 300m, corresponding to 1-minute averages.

8.
J Air Waste Manag Assoc ; 65(10): 1261-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26252366

RESUMO

UNLABELLED: Numerous papers analyze ground-level ozone (O3) trends since the 1980s, but few have linked O3trends with observed changes in nitrogen oxide (NOx) and volatile organic compound (VOC) emissions and ambient concentrations. This analysis of emissions and ambient measurements examines this linkage across the United States on multiple spatial scales from continental to urban. O3concentrations follow the general decreases in both NOx and VOC emissions and ambient concentrations of precursors (nitrogen dioxide, NO2; nonmethane organic compounds, NMOCs). Annual fourth-highest daily peak 8-hr average ozone and annual average or 98th percentile daily maximum hourly NO2concentrations show a statistically significant (p < 0.05) linear fit whose slope is less than 1:1 and intercept is in the 30 to >50 ppbv range. This empirical relationship is consistent with current understanding of O3photochemistry. The linear O3-NO2relationships found from our multispatial scale analysis can be used to extrapolate the rate of change of O3with projected NOx emission reductions, which suggests that future declines in annual fourth-highest daily average 8-hr maximum O3concentrations are unlikely to reach 65 ppbv or lower everywhere in the next decade. Measurements do not indicate increased annual reduction rates in (high) O3concentrations beyond the multidecadal precursor proportionality, since aggressive measures for NOx and VOC reduction are in place and have not produced an accelerated O3reduction rate beyond that prior to the mid-2000s. Empirically estimated changes in O3with emissions suggest that O3is less sensitive to precursor reductions than is found by the CAMx (v. 6.1) photochemical model. Options for increasing the rate of O3change are limited by photochemical factors, including the increase in NOx sensitivity with time (NMOC/NOx ratio increase), increase in O3production efficiency at lower NOx concentrations (higher O3/NOy ratio), and the presence of natural NOx and NMOC precursors and background O3. IMPLICATIONS: This analysis demonstrates empirical relations between O3and precursors based on long term trends in U.S. LOCATIONS: The results indicate that ground-level O3concentrations have responded predictably to reductions in VOC and NOx since the 1980s. The analysis reveals linear relations between the highest O3and NO2concentrations. Extrapolation of the historic trends to the future with expected continued precursor reductions suggest that achieving the 2014 proposed reduction in the U.S. National Ambient Air Quality Standard to a level between 65 and 70 ppbv is unlikely within the next decade. Comparison of measurements with national results from a regulatory photochemical model, CAMx, v. 6.1, suggests that model predictions are more sensitive to emissions changes than the observations would support.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ozônio/análise , Poluição do Ar/prevenção & controle , Monitoramento Ambiental , Modelos Teóricos , Óxidos de Nitrogênio/análise , Estados Unidos
9.
J Air Waste Manag Assoc ; 65(9): 1104-18, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26102211

RESUMO

UNLABELLED: Positive matrix factorization (PMF) and effective variance (EV) solutions to the chemical mass balance (CMB) were applied to PM(2.5) (particulate matter with an aerodynamic diameter <2.5 µm) mass and chemically speciated measurements for samples taken from 2008 to 2010 at the Atlanta, Georgia, and Birmingham, Alabama, sites. Commonly measured PM(2.5) mass, elemental, ionic, and thermal carbon fraction concentrations were supplemented with detailed nonpolar organic speciation by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Source contribution estimates were calculated for motor vehicle exhaust, biomass burning, cooking, coal-fired power plants, road dust, vegetative detritus, and secondary sulfates and nitrates for Atlanta. Similar sources were found for Birmingham, with the addition of an industrial source and the separation of biomass burning into open burning and residential wood combustion. EV-CMB results based on conventional species were qualitatively similar to those estimated by PMF-CMB. Secondary ammonium sulfate was the largest contributor, accounting for 27-38% of PM(2.5), followed by biomass burning (21-24%) and motor vehicle exhaust (9-24%) at both sites, with 4-6% of PM(2.5) attributed to coal-fired power plants by EV-CMB. Including organic compounds in the EV-CMB reduced the motor vehicle exhaust and biomass burning contributions at both sites, with a 13-23% deficit for PM(2.5) mass. The PMF-CMB solution showed mixing of sources within the derived factors, both with and without the addition of speciated organics, as is often the case with complex source mixtures such as those at these urban-scale sites. The nonpolar TD-GC/MS compounds can be obtained from existing filter samples and are a useful complement to the elements, ions, and carbon fractions. However, they should be supplemented with other methods, such as TD-GC/MS on derivitized samples, to obtain a wider range of polar compounds such as sterols, sugars, and organic acids. The PMF and EV solutions to the CMB equations are complementary to, rather than replacements for, each other, as comparisons of their results reveal uncertainties that are not otherwise evident. IMPLICATIONS: Organic markers can be measured on currently acquired PM(2.5) filter samples by thermal methods. These markers can complement element, ion, and carbon fraction measurements from long-term speciation networks. Applying the positive matrix factorization and effective variance solutions for the chemical mass balance equations provides useful information on the accuracy of the source contribution estimates. Nonpolar compounds need to be complemented with polar compounds to better apportion cooking and secondary organic aerosol contributors.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Material Particulado/análise , Alabama , Cidades , Cromatografia Gasosa-Espectrometria de Massas , Georgia , Tamanho da Partícula
10.
Environ Sci Technol ; 47(23): 13536-45, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24180677

RESUMO

A new approach for determining the contributions of emission sources to trends in concentrations of particulate matter and gases is developed using the chemical mass balance (CMB) method and the U.S. EPA's National Emission Inventory (NEI). The method extends our earlier analysis by using temporally varying emission profiles and includes accounting of primary and secondary particulate organic carbon with an empirical regression calculation. The model offers a potentially important tool for verifying that annual emission reductions by major source category have yielded changes in ambient pollutant concentrations. Using long-term measurements from well-instrumented monitoring sites, observed trends in ambient pollutant concentrations at urban and rural locations can be attributed to emission changes. Trends apportionment is conducted on 2000-2011 ambient monitoring data from the SEARCH network with NEI emissions data adjusted to improve interinventory consistency. The application accounts for major source category influences in southeastern U.S. regional trends; local anomalies are noted. In the SEARCH region, open burning is important as a source of CO and carbonaceous particles. Improved agreement between predicted and measured particulate carbon is obtained by increasing mobile diesel exhaust and area-source particulate carbon emissions by 1 and 20%, respectively, compared with NEI values. The method is general and is applicable to data from any monitoring site that is instrumented for criteria air pollutants, associated gases, and particle composition.


Assuntos
Aerossóis/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Modelos Teóricos , Poluentes Atmosféricos/análise , Carbono/análise , Gases/análise , Material Particulado/análise , Sudeste dos Estados Unidos , Estados Unidos , United States Environmental Protection Agency , Emissões de Veículos/análise
11.
J Air Waste Manag Assoc ; 63(4): 377-404, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23687724

RESUMO

Worldwide interest in atmospheric aerosols has emerged since the late 20th century as a part of concerns for air pollution and radiative forcing of the earth's climate. The use of aircraft and balloons for sampling and the use of remote sensing have dramatically expanded knowledge about tropospheric aerosols. Our survey gives an overview of contemporary tropospheric aerosol chemistry based mainly on in situ measurements. It focuses on fine particles less than 1-2.5 microm in diameter. The physical properties of particles by region and altitude are exemplified by particle size distributions, total number and volume concentration, and optical parameters such as extinction coefficient and aerosol optical depth. Particle chemical characterization is size dependent, differentiated by ubiquitous sulfate, and carbon, partially from anthropogenic activity. Large-scale particle distributions extend to intra- and intercontinental proportions involving plumes from population centers to natural disturbances such as dust storms and vegetation fires. In the marine environment, sea salt adds an important component to aerosols. Generally, aerosol components, most of whose sources are at the earth's surface, tend to dilute and decrease in concentration with height, but often show different (layered) profiles depending on meteorological conditions. Key microscopic processes include new particle formation aloft and cloud interactions, both cloud initiation and cloud evaporation. Measurement campaigns aloft are short term, giving snapshots of inherently transient phenomena in the troposphere. Nevertheless, these data, combined with long-term data at the surface and optical depth and transmission observations, yield a unique picture of global tropospheric particle chemistry.


Assuntos
Aerossóis , Poluentes Atmosféricos , Altitude , Atmosfera , Tamanho da Partícula , Monitoramento Ambiental
12.
Environ Sci Technol ; 46(10): 5479-88, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22475316

RESUMO

A new approach for determining the contributions of emission sources to concentrations of particulate matter and gases is developed using the chemical mass balance (CMB) method and the U.S. EPA's National Emission Inventory (NEI). The approach apportions combined gas-phase and condensed-phase concentrations of individual compounds as well as PM(2.5) mass. Because the NEI is used to provide source emission profiles for CMB analysis, the method generates information on the consistency of the NEI with ambient monitoring data. The method also tracks secondary species to primary source emissions, permitting a more complete accounting of the impact of aggregated source types on PM(2.5) mass concentrations. An example application is presented using four years of monitoring data collected at eight sites in the Southeastern Aerosol Research and Characterization (SEARCH) network. Including both primary and secondary species, area sources contributed 2.0-3.7 µg m(-3) (13-26%), point sources contributed 3.0-4.6 µg m(-3) (22-33%), and mobile sources contributed 1.0-6.0 µg m(-3) (9-42%) to mean PM(2.5) mass concentrations. Whereas the NEI generally accounts for the ambient concentrations of gases and particles, certain anomalies are identified, especially related to carbonaceous compounds and dust.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Gases/análise , Material Particulado/análise , Tamanho da Partícula , Sudeste dos Estados Unidos , Emissões de Veículos/análise
13.
J Air Waste Manag Assoc ; 61(3): 339-51, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21416761

RESUMO

Systematic measurement of fine particulate matter (aerodynamic diameter less than 2.5 microm [PM2.5]) mass concentrations began nationally with implementation of the Federal Reference Method (FRM) network in 1998 and 1999. In California, additional monitoring of fine particulate matter (PM) occurred via a dichotomous sampler network and several special studies carried out between 1982 and 2002. The authors evaluate the comparability of FRM and non-FRM measurements of PM2.5 mass concentrations and establish conversion factors to standardize fine mass measurements from different methods to FRM-equivalent concentrations. The authors also identify measurements of PM2.5 mass concentrations that do not agree with FRM or other independent PM2.5 mass measurements. The authors show that PM2.5 mass can be reconstructed to a high degree of accuracy (r2 > 0.9; mean absolute error approximately 2 microg m(-3)) from PM with an aerodynamic diameter < or =10 microm (PM10) mass and species concentrations when site-specific and season-specific conversion factors are used and a statewide record of fine PM mass concentrations by combining the FRM PM2.5 measurements, non-FRM PM2.5 measurements, and reconstructions of PM2.5 mass concentrations. Trends and spatial variations are evaluated using the integrated data. The rates of change of annual fine PM mass were negative (downward trends) at all 22 urban and 6 nonurban (Interagency Monitoring of Protected Visual Environments [IMPROVE]) monitoring locations having at least 15 yr of data during the period 1980-2007. The trends at the IMPROVE sites ranged from -0.05 to -0.25 microg m(-3) yr(-1) (median -0.11 microg m(-3) yr(-1)), whereas urban-site trends ranged from -0.13 to -1.29 microg m(-3) yr(-1) (median -0.59 microg m(-3) yr(-1)). The urban concentrations declined by a factor of 2 over the period of record, and these decreases were qualitatively consistent with changes in emissions of primary PM2.5 and gas-phase precursors of secondary PM. Mean PM2.5 mass concentrations ranged from 3.3 to 7.4 microg m(-3) at IMPROVE sites and from 9.3 to 37.1 microg m(-3) at urban sites.


Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , California , Monitoramento Ambiental , Valores de Referência , Fatores de Tempo , Incerteza
14.
J Air Waste Manag Assoc ; 58(12): 1598-615, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19189758

RESUMO

We evaluated day-of-week differences in mean concentrations of ozone (O3) precursors (nitric oxide [NO], nitrogen oxides [NOx], carbon monoxide [CO], and volatile organic compounds [VOCs]) at monitoring sites in 23 states comprising seven geographic focus areas over the period 1998-2003. Data for VOC measurements were available for six metropolitan areas in five regions. We used Wednesdays to represent weekdays and Sundays to represent weekends; we also analyzed Saturdays. At many sites, NO, NOx, and CO mean concentrations decreased at all individual hours from 6:00 a.m. to 3:00 p.m. on Sundays compared with corresponding Wednesday means. Statistically significant (p < 0.01) weekend decreases in ambient concentrations were observed for 92% of NOx, sites, 89% of CO sites, and 23% of VOC sites. Nine-hour (6:00 a.m. to 3:00 p.m.) mean concentrations of NO, NOx, CO, and VOCs declined by 65, 49, 28, and 19%, respectively, from Wednesdays to Sundays (median site responses). Despite the large reductions in ambient NOx and moderate reductions in ambient CO and VOC concentrations on weekends, ozone and particulate matter (PM) nitrate did not exhibit large changes from weekdays to weekends. The median differences between Wednesday and Sunday mean ozone concentrations at all monitoring sites ranged from 3% higher on Sundays for peak 8-hr concentrations determined from all monitoring days to 3.8% lower on Sundays for peak 1-hr concentrations on extreme-ozone days. Eighty-three percent of the sites did not show statistically significant differences between Wednesday and weekend mean concentrations of peak ozone. Statistically significant weekend ozone decreases occurred at 6% of the sites and significant increases occurred at 11% of the sites. Average PM nitrate concentrations were 2.6% lower on Sundays than on Wednesdays. Statistically significant Sunday PM nitrate decreases occurred at one site and significant increases occurred at seven sites.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/análise , Movimentos do Ar , Monitoramento Ambiental , Nitratos/química , Ozônio/química , Fatores de Tempo , Estados Unidos
15.
J Air Waste Manag Assoc ; 57(11): 1337-50, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18069457

RESUMO

Two thermodynamic equilibrium models were applied to estimate changes in mean airborne fine particle (PM2.5) mass concentrations that could result from changes in ambient concentrations of sulfate, nitric acid, or ammonia in the southeastern United States, the midwestern United States, and central California. Pronounced regional differences were found. Southeastern sites exhibited the lowest current mean concentrations of nitrate, and the smallest predicted responses of PM2.5 nitrate and mass concentrations to reductions of nitric acid, which is the principal reaction product of the oxidation of nitrogen dioxide (NO2) and the primary gas-phase precursor of fine particulate nitrate. Weak responses of PM2.5 nitrate and mass concentrations to changes in nitric acid levels occurred even if sulfate concentrations were half of current levels. The midwestern sites showed higher levels of fine particulate nitrate, characterized by cold-season maxima, and were projected to show decreases in overall PM levels following decreases of either sulfate or nitric acid. For some midwestern sites, predicted PM2.5 nitrate concentrations increased as modeled sulfate levels declined, but sulfate reductions always reduced the predicted fine PM mass concentrations; PM2.5 nitrate concentrations became more sensitive to reductions of nitric acid as modeled sulfate concentrations were decreased. The California sites currently have the highest mean concentrations of fine PM nitrate and the lowest mean concentrations of fine PM sulfate. Both the estimated PM2.5 nitrate and fine mass concentrations decreased in response to modeled reductions of nitric acid at all California sites. The results indicate important regional differences in expected PM2.5 mass concentration responses to changes in sulfate and nitrate precursors. Analyses of ambient data, such as described here, can be a key part of weight of evidence (WOE) demonstrations for PM2.5 attainment plans. Acquisition of the data may require special sampling efforts, especially for PM2.5 precursor concentration data.


Assuntos
Poluentes Atmosféricos/análise , Modelos Químicos , Óxidos de Nitrogênio/análise , Material Particulado/análise , Dióxido de Enxofre/análise , California , Monitoramento Ambiental , Meio-Oeste dos Estados Unidos , Sudeste dos Estados Unidos , Termodinâmica
16.
J Air Waste Manag Assoc ; 56(3): 271-84, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16573190

RESUMO

The authors quantified changes between mean weekday and weekend ambient concentrations of ozone (O3) precursors (volatile organic compounds [VOC], carbon monoxide [CO], nitric oxide, and oxides of nitrogen [NOx]) in Atlanta and surrounding areas to observe how weekend precursor emission levels influenced ambient O3 levels. The authors analyzed CO, nitric oxide (NO), and NO, measurements from 1998 to 2002 and speciated VOC from 1996 to 2003. They observed a strong weekend effect in the Atlanta region, with median daytime (6:00 a.m. to 3:00 p.m. Eastern Standard Time) decreases of 62%, 57%, and 31%, respectively, in the ambient levels of NO, NOx, and CO from Wednesdays to Sundays, during the ozone season (March to October). They also observed significant decreases in ambient VOC levels between Wednesdays and Sundays, with decreases of 28% for the sum of aromatic compounds and 19% for the sum of Photochemical Assessment Monitoring Stations target compounds. Despite large reductions in O3 precursor levels on weekends, day-of-week differences in O3 mixing ratios in and near Atlanta were much smaller. Averaging overall O3-season days, the 1-hr and 8-hr mean peak daily O3 maxima on Sundays were 4.5% and 2.3% lower, respectively, than their mean levels on Wednesdays (median of 14 site differences), with no sites showing statistically significant Wednesday-to-Sunday differences. When restricted to high-O3 days (highest 3 peak O3 days per day of week per site per year), the 1-hr and 8-hr Sunday O3 mixing ratios were 11% and 10% lower, respectively, than their mean peak levels on Wednesdays (median of 14 site differences), with 6 of 14 sites showing statistically significant Wednesday-to-Sunday differences. The analyses of weekday/weekend differences in O3 precursor concentrations show that different emission reductions than normally take place each weekend will be required to achieve major reductions in ambient ozone levels in the Atlanta area.


Assuntos
Poluentes Atmosféricos/análise , Ozônio/análise , Movimentos do Ar , Carbono/análise , Monóxido de Carbono/análise , Cidades , Monitoramento Ambiental , Óxidos de Nitrogênio/análise , Compostos Orgânicos/análise , Sudeste dos Estados Unidos , Fatores de Tempo
17.
J Air Waste Manag Assoc ; 55(11): 1585-99, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16350359

RESUMO

Protocols for the particulate matter (PM) National Ambient Air Quality Standards (NAAQS), and the Regional Haze Rule (RHR) give two complementary definitions for "natural" background airborne particle concentrations in the United States. The definition for the NAAQS derives largely from reported annual averages, whereas the definition for the RHR takes into account the frequency of occurrence of a range of visibility conditions estimated using fine particle composition. These definitions are simple, static representations of background or "unmanageable" aerosol conditions in the United States. An accumulation of data from rural-remote sites representing global conditions indicates that the airborne particle concentrations are highly variable. Observational campaigns show weather-related variations, including incidents of regional or intercontinental transport of pollution that influence background aerosol levels over midlatitude North America. Defining a background in North America based on long-term observations relies mainly on the remote-rural IMPROVE network in the United States, with a few additional measurements from Canada. Examination of the frequency of occurrence of mass concentrations and particle components provides insight not only about annual median conditions but also the variability of apparent background conditions. The results of this analysis suggest that a more elaborate approach to defining an unmanageable background could improve the present approach taken for information input into the U.S. regulatory process. An approach interpreting the continental gradients in fine PM (PM2.5) concentrations and composition may be warranted.


Assuntos
Aerossóis/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Valores de Referência , Estados Unidos
18.
J Air Waste Manag Assoc ; 55(3): 265-72, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15828668

RESUMO

Measurements from sites of the Southeastern Aerosol Research and Characterization (SEARCH) program, made from 1998 to 2001, are used with a thermodynamic equilibrium model, Simulating Composition of Atmospheric Particles at Equilbrium (SCAPE2), to extend an earlier investigation of the responses of fine particulate nitrate (NO3-) and fine particulate matter (PM2.5) mass concentrations to changes in concentrations of nitric acid (HNO3) and sulfate (SO42-). The responses were determined for a projected range of variations of SO42- and HNO3 concentrations resulting from adopted and proposed regulatory initiatives. The predicted PM2.5 mass concentration decreases averaged 1.8-3.9 microg/m3 for SO42- decreases of 46-63% from current concentrations. Combining the S042- decrease with a 40% HNO3 decrease from current concentrations (approximating expected mobile-source oxides of nitrogen [NOx] reductions by 2020) yielded additional incremental reductions of mean predicted PM2.5 mass concentration of 0.2 microg/m3 for three nonurban sites and 0.8-1 microg/m3 for one nonurban and two urban sites. Increasing the HNO3 reduction to 55% (an estimate of adding Clear Skies Phase II NOx reductions) yielded additional incremental reductions of mean predicted PM2.5 mass concentration of 0-0.4 microg/m3. Because of the well-documented losses of particulate NO3- from Federal Reference Method (FRM) filters, only a fraction of these incremental changes would be observed.


Assuntos
Poluentes Atmosféricos/análise , Óxidos de Nitrogênio/análise , Dióxido de Enxofre/análise , Poluição do Ar/prevenção & controle , Cidades , Monitoramento Ambiental , Tamanho da Partícula , Sudeste dos Estados Unidos , Dióxido de Enxofre/química , Termodinâmica
19.
J Air Waste Manag Assoc ; 54(11): 1452-70, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15587557

RESUMO

Analyses of ozone (O3) measurements in conjunction with photochemical modeling were used to assess the feasibility of attaining the federal 8-hr O3 standard in the eastern United States. Various combinations of volatile organic compound (VOC) and oxides of nitrogen (NOx) emission reductions were effective in lowering modeled peak 1-hr O3 concentrations. VOC emissions reductions alone had only a modest impact on modeled peak 8-hr O3 concentrations. Anthropogenic NOx emissions reductions of 46-86% of 1996 base case values were needed to reach the level of the 8-hr standard in some areas. As NOx emissions are reduced, O3 production efficiency increases, which accounts for the less than proportional response of calculated 8-hr O3 levels. Such increases in O3 production efficiency also were noted in previous modeling work for central California. O3 production in some urban core areas, such as New York City and Chicago, IL, was found to be VOC-limited. In these areas, moderate NOx emissions reductions may be accompanied by increases in peak 8-hr O3 levels. The findings help to explain differences in historical trends in 1- and 8-hr O3 levels and have serious implications for the feasibility of attaining the 8-hr O3 standard in several areas of the eastern United States.


Assuntos
Poluição do Ar/prevenção & controle , Oxidantes Fotoquímicos/análise , Ozônio/análise , Monitoramento Ambiental , Oxidantes Fotoquímicos/normas , Ozônio/normas , Valores de Referência , Estados Unidos
20.
J Air Waste Manag Assoc ; 53(7): 816-28, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12880070

RESUMO

Ambient air quality data were analyzed to empirically evaluate the effects of reductions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx) emissions on weekday and weekend levels of ozone (O3; 1991-1998) and particulate NO3- (1980-1999) in southern California. Despite significantly lower O3 precursor levels on weekends, 20 of 28 South Coast Air Basin (SoCAB) sites (28 of all 78 southern California sites) showed statistically significant higher mean O3 levels on Sundays than on weekdays (p < 0.01); 49 of the remaining 50 sites showed no significant differences between mean weekday and Sunday peak O3 levels. We also observed no statistically significant differences between mean weekday and weekend concentrations of particulate NO3- or nitric acid (HNO3, the precursor of particulate NO3-). Averaged over sites, the mean Sunday NOx and nonmethane hydrocarbon concentrations were 25-41% and 16-30% lower, respectively, than on weekdays. Site-to-site differences between weekend and weekday mean peak hourly O3 levels were related to whether O3 formation was limited by the availability of NOx. A thermodynamic equilibrium model predicts that particulate NO3- levels would decrease in response to a reduction of HNO3, and that particulate ammonium NO3- formation was not limited by the availability of ammonia. The similarity of mean weekday and weekend levels of NO3- therefore did not result from limitations on the formation of particulate NO3- from its precursor, HNO3.


Assuntos
Poluentes Atmosféricos/análise , Óxidos de Nitrogênio/análise , Oxidantes Fotoquímicos/análise , Ozônio/análise , California , Monitoramento Ambiental , Compostos Orgânicos , Periodicidade , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA