Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
New Phytol ; 242(6): 2746-2762, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666352

RESUMO

Legume plants develop two types of root postembryonic organs, lateral roots and symbiotic nodules, using shared regulatory components. The module composed by the microRNA390, the Trans-Acting SIRNA3 (TAS3) RNA and the Auxin Response Factors (ARF)2, ARF3, and ARF4 (miR390/TAS3/ARFs) mediates the control of both lateral roots and symbiotic nodules in legumes. Here, a transcriptomic approach identified a member of the Lateral Organ Boundaries Domain (LBD) family of transcription factors in Medicago truncatula, designated MtLBD17/29a, which is regulated by the miR390/TAS3/ARFs module. ChIP-PCR experiments evidenced that MtARF2 binds to an Auxin Response Element present in the MtLBD17/29a promoter. MtLBD17/29a is expressed in root meristems, lateral root primordia, and noninfected cells of symbiotic nodules. Knockdown of MtLBD17/29a reduced the length of primary and lateral roots and enhanced lateral root formation, whereas overexpression of MtLBD17/29a produced the opposite phenotype. Interestingly, both knockdown and overexpression of MtLBD17/29a reduced nodule number and infection events and impaired the induction of the symbiotic genes Nodulation Signaling Pathway (NSP) 1 and 2. Our results demonstrate that MtLBD17/29a is regulated by the miR390/TAS3/ARFs module and a direct target of MtARF2, revealing a new lateral root regulatory hub recruited by legumes to act in the root nodule symbiotic program.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Medicago truncatula , Proteínas de Plantas , Nodulação , Raízes de Plantas , Fatores de Transcrição , Medicago truncatula/genética , Medicago truncatula/microbiologia , Medicago truncatula/metabolismo , Medicago truncatula/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Nodulação/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Regiões Promotoras Genéticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Técnicas de Silenciamento de Genes , Simbiose/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento
3.
IUBMB Life ; 75(7): 580-594, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36852968

RESUMO

In this study, we aimed to identify long noncoding RNAs (lncRNAs) in root tips of the model legume Medicago truncatula using previously generated nuclear, total polyA, ribosome-associated polyA, and Riboseq RNA datasets, which might shed light on their localization and potential regulatory roles. RNA-seq data were mapped to the version 5 of the M. truncatula A17 genome and analyzed to identify genome annotated lncRNAs and putative new root tip (NRT) lncRNAs. lncRNAs were classified according to their genomic location relative to chromatin accessible regions, protein-coding genes and transposable elements (TE), finding differences between annotated lncRNAs and NRT lncRNAs, both in their genomic position as well as in the type of TEs in their vicinity. We investigated their response to submergence and found a set of regulated lncRNAs that were preferentially upregulated in the nucleus, some of which were located nearby genes of the conserved submergence upregulated gene families, and chromatin accessible regions suggesting a potential regulatory role. Finally, the accumulation of lncRNAs under submergence was validated by reverse transcription quantitative polymerase chain reaction on nuclear RNA, providing additional evidence of their localization, which could ultimately be required for their function.


Assuntos
Medicago truncatula , RNA Longo não Codificante , RNA Longo não Codificante/genética , Medicago truncatula/genética , Meristema , Citosol , Cromatina/genética
4.
Front Plant Sci ; 13: 992543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212340

RESUMO

Heterotrimeric Nuclear Factor Y (NF-Y) transcription factors are key regulators of the symbiotic program that controls rhizobial infection and nodule organogenesis. Using a yeast two-hybrid screening, we identified a putative protein kinase of Phaseolus vulgaris that interacts with the C subunit of the NF-Y complex. Physical interaction between NF-YC1 Interacting Protein Kinase (NIPK) and NF-YC1 occurs in the cytoplasm and the plasma membrane. Only one of the three canonical amino acids predicted to be required for catalytic activity is conserved in NIPK and its putative homologs from lycophytes to angiosperms, indicating that NIPK is an evolutionary conserved pseudokinase. Post-transcriptional silencing on NIPK affected infection and nodule organogenesis, suggesting NIPK is a positive regulator of the NF-Y transcriptional complex. In addition, NIPK is required for activation of cell cycle genes and early symbiotic genes in response to rhizobia, including NF-YA1 and NF-YC1. However, strain preference in co-inoculation experiments was not affected by NIPK silencing, suggesting that some functions of the NF-Y complex are independent of NIPK. Our work adds a new component associated with the NF-Y transcriptional regulators in the context of nitrogen-fixing symbiosis.

5.
Sci Rep ; 12(1): 2614, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173231

RESUMO

Legume plants establish a nitrogen-fixing symbiosis with soil bacteria known as rhizobia. Compatibility between legumes and rhizobia is determined at species-specific level, but variations in the outcome of the symbiotic process are also influenced by the capacity of the plant to discriminate and select specific strains that are better partners. We compared the transcriptional response of two genetically diverse accessions of Phaseolus vulgaris from Mesoamerica and South Andes to Rhizobium etli strains that exhibit variable degrees of symbiotic affinities. Our results indicate that the plant genotype is the major determinant of the transcriptional reprogramming occurring in roots at early stages of the symbiotic interaction. Differentially expressed genes (DEGs) regulated in the Mesoamerican and the Andean accessions in response to specific strains are different, but they belong to the same functional categories. The common and strain-specific transcriptional responses to rhizobia involve distinct transcription factors and cis-elements present in the promoters of DEGs in each accession, showing that diversification and domestication of common bean at different geographic regions influenced the evolution of symbiosis differently in each genetic pool. Quantitative PCR analysis validated our transcriptional datasets, which constitute a valuable source of coding and non-coding candidate genes to further unravel the molecular determinants governing the mechanisms by which plants select bacterial strains that produce a better symbiotic outcome.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Phaseolus/genética , Phaseolus/fisiologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA de Plantas/genética , Simbiose/genética , Simbiose/fisiologia , Transcriptoma/genética , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Rhizobiaceae/fisiologia , Microbiologia do Solo , Especificidade da Espécie
6.
New Phytol ; 234(4): 1430-1447, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35203109

RESUMO

Phaseolus vulgaris plants from the Mesoamerican centre of genetic diversification establish a preferential and more efficient root nodule symbiosis with sympatric Rhizobium etli strains. This is mediated by changes in host gene expression, which might occur either at the transcriptional or at the post-transcriptional level. However, the implication of small RNA (sRNA)-mediated control of gene expression in strain selectivity has remained elusive. sRNA sequencing was used to identify host microRNAs (miRNAs) differentially regulated in roots at an early stage of the symbiotic interaction, which were further characterized by applying a reverse genetic approach. In silico analysis identified known and new miRNAs that accumulated to a greater extent in the preferential and more efficient interaction. One of them, designated as Pvu-miR5924, participates in the mechanisms that determine the selection of R. etli strains that will colonize the nodules. In addition, the functional analysis of Pvu-miR390b verified that this miRNA is a negative modulator of nodule formation and bacterial infection. This study not only extended the list of miRNAs identified in P. vulgaris but also enabled the identification of miRNAs that play relevant functions in nodule formation, rhizobial infection and the selection of the rhizobial strains that will occupy the nodule.


Assuntos
MicroRNAs , Phaseolus , Rhizobium etli , Rhizobium , MicroRNAs/genética , Phaseolus/genética , Rhizobium/genética , Rhizobium etli/genética , Simbiose/genética
7.
Biochem J ; 478(14): 2775-2788, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34297042

RESUMO

Plants are surrounded by a vast diversity of microorganisms. Limiting pathogenic microorganisms is crucial for plant survival. On the other hand, the interaction of plants with beneficial microorganisms promotes their growth or allows them to overcome nutrient deficiencies. Balancing the number and nature of these interactions is crucial for plant growth and development, and thus, for crop productivity in agriculture. Plants use sophisticated mechanisms to recognize pathogenic and beneficial microorganisms and genetic programs related to immunity or symbiosis. Although most research has focused on characterizing changes in the transcriptome during plant-microbe interactions, the application of techniques such as Translating Ribosome Affinity Purification (TRAP) and Ribosome profiling allowed examining the dynamic association of RNAs to the translational machinery, highlighting the importance of the translational level of control of gene expression in both pathogenic and beneficial interactions. These studies revealed that the transcriptional and the translational responses are not always correlated, and that translational control operates at cell-specific level. In addition, translational control is governed by cis-elements present in the 5'mRNA leader of regulated mRNAs, e.g. upstream open reading frames (uORFs) and sequence-specific motifs. In this review, we summarize and discuss the recent advances made in the field of translational control during pathogenic and beneficial plant-microbe interactions.


Assuntos
Regulação da Expressão Gênica de Plantas , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas/genética , Biossíntese de Proteínas , Bactérias/genética , Bactérias/metabolismo , Bactérias/patogenicidade , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plantas/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Simbiose/genética , Virulência/genética
8.
Front Plant Sci ; 12: 659061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33897748

RESUMO

Auxin Response Factors (ARFs) constitute a large family of transcription factors that mediate auxin-regulated developmental programs in plants. ARF2, ARF3, and ARF4 are post-transcriptionally regulated by the microRNA390 (miR390)/trans-acting small interference RNA 3 (TAS3) module through the action of TAS3-derived trans - acting small interfering RNAs (ta-siRNA). We have previously reported that constitutive activation of the miR390/TAS3 pathway promotes elongation of lateral roots but impairs nodule organogenesis and infection by rhizobia during the nitrogen-fixing symbiosis established between Medicago truncatula and its partner Sinorhizobium meliloti. However, the involvement of the targets of the miR390/TAS3 pathway, i.e., MtARF2, MtARF3, MtARF4a, and MtARF4b, in root development and establishment of the nitrogen-fixing symbiosis remained unexplored. Here, promoter:reporter fusions showed that expression of both MtARF3 and MtARF4a was associated with lateral root development; however, only the MtARF4a promoter was active in developing nodules. In addition, up-regulation of MtARF2, MtARF3, and MtARF4a/b in response to rhizobia depends on Nod Factor perception. We provide evidence that simultaneous knockdown of MtARF2, MtARF3, MtARF4a, and MtARF4b or mutation in MtARF4a impaired nodule formation, and reduced initiation and progression of infection events. Silencing of MtARF2, MtARF3, MtARF4a, and MtARF4b altered mRNA levels of the early nodulation gene nodulation signaling pathway 2 (MtNSP2). In addition, roots with reduced levels of MtARF2, MtARF3, MtARF4a, and MtARF4b, as well as arf4a mutant plants exhibited altered root architecture, causing a reduction in primary and lateral root length, but increasing lateral root density. Taken together, our results suggest that these ARF members are common key players of the morphogenetic programs that control root development and the formation of nitrogen-fixing nodules.

9.
Front Plant Sci ; 10: 221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873199

RESUMO

Transcription factors of the Nuclear Factor Y (NF-Y) family play essential functions in plant development and plasticity, including the formation of lateral root organs such as lateral root and symbiotic nodules. NF-Ys mediate transcriptional responses by acting as heterotrimers composed of three subunits, NF-YA, NF-YB, and NF-YC, which in plants are encoded by relatively large gene families. We have previously shown that, in the Phaseolus vulgaris × Rhizobium etli interaction, the PvNF-YC1 subunit is involved not only in the formation of symbiotic nodules, but also in the preference exhibited by the plant for rhizobial strains that are more efficient and competitive in nodule formation. PvNF-YC1 forms a heterotrimer with the PvNF-YA1 and PvNF-YB7 subunits. Here, we used promoter:reporter fusions to show that both PvNF-YA1 and PvNF-YB7 are expressed in symbiotic nodules. In addition, we report that knock-down of PvNF-YA1 and its close paralog PvNF-YA9 abolished nodule formation by either high or low efficient strains and arrested rhizobial infection. On the other hand, knock-down of PvNF-YB7 only affected the symbiotic outcome of the high efficient interaction, suggesting that other symbiotic NF-YB subunits might be involved in the more general mechanisms of nodule formation. More important, we present functional evidence supporting that both PvNF-YA1 and PvNF-YB7 are part of the mechanisms that allow P. vulgaris plants to discriminate and select those bacterial strains that perform better in nodule formation, most likely by acting in the same heterotrimeric complex that PvNF-YC1.

10.
Small GTPases ; 10(5): 350-360, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-28644721

RESUMO

The superfamily of small monomeric GTPases originated in a common ancestor of eukaryotic multicellular organisms and, since then, it has evolved independently in each lineage to cope with the environmental challenges imposed by their different life styles. Members of the small GTPase family function in the control of vesicle trafficking, cytoskeleton rearrangements and signaling during crucial biological processes, such as cell growth and responses to environmental cues. In this review, we discuss the emerging roles of these small GTPases in the pathogenic and symbiotic interactions established by plants with microorganisms present in their nearest environment, in which membrane trafficking is crucial along the different steps of the interaction, from recognition and signal transduction to nutrient exchange.


Assuntos
Membrana Celular/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Transdução de Sinais/fisiologia , Transporte Biológico Ativo/fisiologia
11.
Plant Physiol ; 174(4): 2469-2486, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28663332

RESUMO

Legume roots form two types of postembryonic organs, lateral roots and symbiotic nodules. Nodule formation is the result of the interaction of legumes with rhizobia and requires the mitotic activation and differentiation of root cells as well as an independent, but coordinated, program that allows infection by rhizobia. MicroRNA390 (miR390) is an evolutionarily conserved microRNA that targets the Trans-Acting Short Interference RNA3 (TAS3) transcript. Cleavage of TAS3 by ARGONAUTE7 results in the production of trans-acting small interference RNAs, which target mRNAs encoding AUXIN RESPONSE FACTOR2 (ARF2), ARF3, and ARF4. Here, we show that activation of the miR390/TAS3 regulatory module by overexpression of miR390 in Medicago truncatula promotes lateral root growth but prevents nodule organogenesis, rhizobial infection, and the induction of two key nodulation genes, Nodulation Signaling Pathway1 (NSP1) and NSP2 Accordingly, inactivation of the miR390/TAS3 module, either by expression of a miR390 target mimicry construct or mutations in ARGONAUTE7, enhances nodulation and rhizobial infection, alters the spatial distribution of the nodules, and increases the percentage of nodules with multiple meristems. Our results revealed a key role of the miR390/TAS3 pathway in legumes as a modulator of lateral root organs, playing opposite roles in lateral root and nodule development.


Assuntos
Medicago truncatula/genética , MicroRNAs/metabolismo , Proteínas de Plantas/metabolismo , Nodulação/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Simbiose/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , MicroRNAs/genética , Modelos Biológicos , Mutação/genética , Especificidade de Órgãos/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/ultraestrutura , Sinorhizobium meliloti/fisiologia
12.
Plant Mol Biol ; 93(6): 549-562, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28074430

RESUMO

KEY MESSAGE: Progression of the infection canal that conducts rhizobia to the nodule primordium requires a functional Rab GTPase located in Golgi/trans-Golgi that also participate in root hair polar growth. Common bean (Phaseolus vulgaris) symbiotically associates with its partner Rhizobium etli, resulting in the formation of root nitrogen-fixing nodules. Compatible bacteria can reach cortical cells in a tightly regulated infection process, in which the specific recognition of signal molecules is a key step to select the symbiotic partner. In this work, we show that RabA2, a monomeric GTPase from common bean, is required for the progression of the infection canal, referred to as the infection thread (IT), toward the cortical cells. Expression of miss-regulated mutant variants of RabA2 resulted in an increased number of abortive infection events, including bursting of ITs and a reduction in the number of nodules. Nodules formed in these plants were small and contained infected cells with disrupted symbiosome membranes, indicating either early senescence of these cells or defects in the formation of the symbiosome membrane during bacterial release. RabA2 localized to mobile vesicles around the IT, but mutations that affect GTP hydrolysis or GTP/GDP exchange modified this localization. Colocalization of RabA2 with ArfA1 and a Golgi marker indicates that RabA2 localizes in Golgi stacks and the trans-Golgi network. Our results suggest that RabA2 is part of the vesicle transport events required to maintain the integrity of the membrane during IT progression.


Assuntos
Phaseolus/fisiologia , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Proteínas rab de Ligação ao GTP/metabolismo , Membrana Celular/microbiologia , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Mutação , Phaseolus/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Nódulos Radiculares de Plantas/genética , Simbiose , Proteínas rab de Ligação ao GTP/genética
13.
Plant Physiol ; 169(4): 2761-73, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26432878

RESUMO

The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants.


Assuntos
Fator de Ligação a CCAAT/genética , Fabaceae/genética , Filogenia , Proteínas de Plantas/genética , Nodulação/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Fator de Ligação a CCAAT/classificação , Fator de Ligação a CCAAT/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Fabaceae/metabolismo , Fabaceae/microbiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Medicago truncatula/genética , Medicago truncatula/microbiologia , Microscopia Confocal , Dados de Sequência Molecular , Phaseolus/genética , Phaseolus/microbiologia , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizobium/fisiologia , Homologia de Sequência de Aminoácidos , Sinorhizobium meliloti/fisiologia , Simbiose , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
14.
Plant Physiol ; 169(2): 1356-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26282238

RESUMO

Establishment of nitrogen-fixing symbiosis requires the recognition of rhizobial molecules to initiate the development of nodules. Using transcriptional profiling of roots inoculated with mutant strains defective in the synthesis of Nod Factor (NF), exopolysaccharide (EPS), or lipopolysaccharide (LPS), we identified 2,606 genes from common bean (Phaseolus vulgaris) that are differentially regulated at early stages of its interaction with Rhizobium etli. Many transcription factors from different families are modulated by NF, EPS, and LPS in different combinations, suggesting that the plant response depends on the integration of multiple signals. Some receptors identified as differentially expressed constitute excellent candidates to participate in signal perception of molecules derived from the bacteria. Several components of the ethylene signal response, a hormone that plays a negative role during early stages of the process, were down-regulated by NF and LPS. In addition, genes encoding proteins involved in small RNA-mediated gene regulation were regulated by these signal molecules, such as Argonaute7, a specific component of the trans-acting short interfering RNA3 pathway, an RNA-dependent RNA polymerase, and an XH/XP domain-containing protein, which is part of the RNA-directed DNA methylation. Interestingly, a number of genes encoding components of the circadian central oscillator were down-regulated by NF and LPS, suggesting that a root circadian clock is adjusted at early stages of symbiosis. Our results reveal a complex interaction of the responses triggered by NF, LPS, and EPS that integrates information of the signals present in the surface or secreted by rhizobia.


Assuntos
Phaseolus/genética , Phaseolus/microbiologia , Rhizobium etli/fisiologia , Transcriptoma , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas , Lipopolissacarídeos/metabolismo , Mutação , Phaseolus/metabolismo , Interferência de RNA , Reprodutibilidade dos Testes , Rhizobium etli/genética , Rhizobium etli/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Transdução de Sinais/genética , Fatores de Transcrição/genética
15.
Plant Physiol ; 164(3): 1430-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424321

RESUMO

A C subunit of the heterotrimeric nuclear factor Y (NF-YC1) was shown to play a key role in nodule organogenesis and bacterial infection during the nitrogen fixing symbiosis established between common bean (Phaseolus vulgaris) and Rhizobium etli. To identify other proteins involved in this process, we used the yeast (Saccharomyces cerevisiae) two-hybrid system to screen for NF-YC1-interacting proteins. One of the positive clones encodes a member of the Phytochrome A Signal Transduction1 subfamily of GRAS (for Gibberellic Acid-Insensitive (GAI), Repressor of GAI, and Scarecrow) transcription factors. The protein, named Scarecrow-like13 Involved in Nodulation (SIN1), localizes both to the nucleus and the cytoplasm, but in transgenic Nicotiana benthamiana cells, bimolecular fluorescence complementation suggested that the interaction with NF-YC1 takes place predominantly in the nucleus. SIN1 is expressed in aerial and root tissues, with higher levels in roots and nodules. Posttranscriptional gene silencing of SIN1 using RNA interference (RNAi) showed that the product of this gene is involved in lateral root elongation. However, root cell organization, density of lateral roots, and the length of root hairs were not affected by SIN1 RNAi. In addition, the expression of the RNAi of SIN1 led to a marked reduction in the number and size of nodules formed upon inoculation with R. etli and affected the progression of infection threads toward the nodule primordia. Expression of NF-YA1 and the G2/M transition cell cycle genes Cyclin B and Cell Division Cycle2 was reduced in SIN1 RNAi roots. These data suggest that SIN1 plays a role in lateral root elongation and the establishment of root symbiosis in common bean.


Assuntos
Fator de Ligação a CCAAT/metabolismo , Organogênese , Phaseolus/microbiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/microbiologia , Simbiose , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas/genética , Família Multigênica , Especificidade de Órgãos/genética , Phaseolus/crescimento & desenvolvimento , Phaseolus/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/microbiologia , Ligação Proteica , Interferência de RNA , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Transcrição Gênica
16.
Plant Physiol Biochem ; 68: 81-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23644278

RESUMO

Flavonoids and isoflavonoids participate in the signaling exchange between roots of legumes and nitrogen-fixing rhizobia and can promote division of cortical cells during nodule formation by inhibiting auxin transport. Here, we report the characterization of a member of the common bean isoflavone reductase (EC 1.3.1.45, PvIFR1) gene family, an enzyme that participates in the last steps of the biosynthetic pathway of isoflavonoids. Transcript levels of PvIFR1 were detected preferentially in the susceptible zone of roots, augmented upon nitrogen starvation and in response to Rhizobium etli inoculation at very early stages of the interaction. Knockdown of PvIFR1 mediated by RNA interference (RNAi) in common bean composite plants resulted in a reduction of shoot and root length. Furthermore, reduction of PvIFR1 mRNAs also affected growth of lateral roots after emergence, a stage in which auxins are required to establish a persistent meristem. Upon inoculation, the number of nodules formed by different strains of R. etli was significantly lower in IFR RNAi than in control roots. Transcript levels of two auxin-regulated genes are consistent with lower levels of auxin in PvIFR1 silenced roots. These results suggest a complex role of PvIFR1 during plant growth, root development and symbiosis, all processes in which auxin transport is involved.


Assuntos
Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Phaseolus/fisiologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Técnicas de Silenciamento de Genes , Ácidos Indolacéticos/metabolismo , Dados de Sequência Molecular , Família Multigênica , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Phaseolus/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Interferência de RNA , Rhizobium etli/fisiologia , Simbiose/fisiologia
17.
Plant J ; 73(2): 289-301, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23050939

RESUMO

Translation of mRNAs is a key regulatory step that contributes to the coordination and modulation of eukaryotic gene expression during development or adaptation to the environment. mRNA stability or translatability can be regulated by the action of small regulatory RNAs (sRNAs), which control diverse biological processes. Under low nitrogen conditions, leguminous plants associate with soil bacteria and develop a new organ specialized in nitrogen fixation: the nodule. To gain insight into the translational regulation of mRNAs during nodule formation, the association of mRNAs and sRNAs to polysomes was characterized in roots of the model legume Medicago truncatula during the symbiotic interaction with Sinorhizobium meliloti. Quantitative comparison of steady-state and polysomal mRNAs for 15 genes involved in nodulation identified a group of transcripts with slight or no change in total cellular abundance that were significantly upregulated at the level of association with polysomes in response to rhizobia. This group included mRNAs encoding receptors like kinases required either for nodule organogenesis, bacterial infection or both, and transcripts encoding GRAS and NF-Y transcription factors (TFs). Quantitative analysis of sRNAs in total and polysomal RNA samples revealed that mature microRNAs (miRNAs) were associated with the translational machinery, notably, miR169 and miR172, which target the NF-YA/HAP2 and AP2 TFs, respectively. Upon inoculation, levels of miR169 pronouncedly decreased in polysomal complexes, concomitant with the increased accumulation of the NF-YA/HAP2 protein. These results indicate that both mRNAs and miRNAs are subject to differential recruitment to polysomes, and expose the importance of selective mRNA translation during root nodule symbiosis.


Assuntos
Medicago truncatula/metabolismo , MicroRNAs/metabolismo , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Sinorhizobium meliloti/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Medicago truncatula/genética , Medicago truncatula/microbiologia , MicroRNAs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo
18.
Plant Signal Behav ; 8(2): e23102, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23221780

RESUMO

During the past ten years, changes in the transcriptome have been assessed at different stages of the legume-rhizobia association by the use of DNA microarrays and, more recently, by RNA sequencing technologies. These studies allowed the identification of hundred or thousand of genes whose steady-state mRNA levels increase or decrease upon bacterial infection or in nodules as compared with uninfected roots. However, transcriptome based-approaches do not distinguish between mRNAs that are being actively translated, stored as messenger ribonucleoproteins (mRNPs) or targeted for degradation. Despite that the increase in steady-state levels of an mRNA does not necessarily correlate with an increase in abundance or activity of the encoded protein, this information has been commonly used to select genes that are candidates to play a role during nodule organogenesis or bacterial infection. Such criterion does not take into account the post-transcriptional mechanisms that contribute to the regulation of gene expression. One of such mechanisms, which has significant impact on gene expression, is the selective recruitment of mRNAs to the translational machinery.  Here, we review the post-transcriptional mechanisms that contribute to the regulation of gene expression in the context of the ecological and agronomical important symbiotic interaction established between roots of legumes and the nitrogen fixing bacteria collectively known as rhizobia. In addition, we discuss how the development of new technologies that allow the assessment of these regulatory layers would help to understand the genetic network governing legume rhizobia symbiosis.


Assuntos
Rhizobium/fisiologia , Simbiose/fisiologia , Fabaceae/microbiologia , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , RNA Mensageiro/genética , Simbiose/genética
19.
Plant Cell ; 21(9): 2797-810, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19749154

RESUMO

Legume plants are able to establish a symbiotic relationship with soil bacteria from the genus Rhizobium, leading to the formation of nitrogen-fixing root nodules. Successful nodulation requires both the formation of infection threads (ITs) in the root epidermis and the activation of cell division in the cortex to form the nodule primordium. This study describes the characterization of RabA2, a common bean (Phaseolus vulgaris) cDNA previously isolated as differentially expressed in root hairs infected with Rhizobium etli, which encodes a protein highly similar to small GTPases of the RabA2 subfamily. This gene is expressed in roots, particularly in root hairs, where the protein was found to be associated with vesicles that move along the cell. The role of this gene during nodulation has been studied in common bean transgenic roots using a reverse genetic approach. Examination of root morphology in RabA2 RNA interference (RNAi) plants revealed that the number and length of the root hairs were severely reduced in these plants. Upon inoculation with R. etli, nodulation was completely impaired and no induction of early nodulation genes (ENODs), such as ERN1, ENOD40, and Hap5, was detected in silenced hairy roots. Moreover, RabA2 RNAi plants failed to induce root hair deformation and to initiate ITs, indicating that morphological changes that precede bacterial infection are compromised in these plants. We propose that RabA2 acts in polar growth of root hairs and is required for reorientation of the root hair growth axis during bacterial infection.


Assuntos
Proteínas de Plantas/metabolismo , Nodulação/genética , Raízes de Plantas/crescimento & desenvolvimento , Simbiose , Proteínas rab de Ligação ao GTP/metabolismo , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Phaseolus/genética , Phaseolus/metabolismo , Phaseolus/microbiologia , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Interferência de RNA , RNA de Plantas/genética , Rhizobium/fisiologia , Proteínas rab de Ligação ao GTP/genética
20.
Mol Plant Microbe Interact ; 21(4): 459-68, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18321191

RESUMO

Common bean cultivars are nodulated preferentially by Rhizobium etli lineages from the same center of host diversification. Nodulation was found to be earlier and numerous in bean plants inoculated with the cognate strain. We predicted that analysis of transcripts at early stages of the interaction between host and rhizobium would identify plant genes that are most likely to be involved in this preferential nodulation. Therefore, we applied a suppressive subtractive hybridization approach in which cDNA from a Mesoamerican cultivar inoculated with either the more- or less-efficient strain of R. etli was used as the driver and the tester, respectively. Forty-one independent tentative consensus sequences (TCs) were obtained and classified into different functional categories. Of 11 selected TCs, 9 were confirmed by quantitative reverse-transcriptase polymerase chain reaction. Two genes show high homology to previously characterized plant receptors. Two other upregulated genes encode for Rab11, a member of the small GTP-binding protein family, and HAP5, a subunit of the heterotrimeric CCAAT-transcription factor. Interestingly, one of the TCs encodes for an isoflavone reductase, which may lead to earlier Nod factor production by specific strains of rhizobia. The transcript abundance of selected cDNAs also was found to be higher in mature nodules of the more efficient interaction. Small or no differences were observed when an Andean bean cultivar was inoculated with a cognate strain, suggesting involvement of these genes in the strain-specific response. The potential role of these genes in the early preferential symbiotic interaction is discussed.


Assuntos
Genes de Plantas/genética , Phaseolus/genética , Rhizobium etli/fisiologia , Simbiose , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Hibridização de Ácido Nucleico/métodos , Phaseolus/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA