Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Endocrinol Metab ; 35(4): 290-299, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423899

RESUMO

From our daily nutrition and synthesis within cells, nucleosides enter the bloodstream and circulate throughout the body and tissues. Nucleosides and nucleotides are classically viewed as precursors of nucleic acids, but recently they have emerged as a novel energy source for central carbon metabolism. Through catabolism by nucleoside phosphorylases, the ribose sugar group is released and can provide substrates for lower steps in glycolysis. In environments with limited glucose, such as at sites of infection or in the tumor microenvironment (TME), cells can use, and may even require, this alternative energy source. Here, we discuss the implications of these new findings in health and disease and speculate on the potential new roles of nucleosides and nucleic acids in energy metabolism.


Assuntos
Ácidos Nucleicos , Nucleosídeos , Humanos , Nucleosídeos/metabolismo , Carbono/metabolismo , Nucleotídeos/metabolismo
2.
J Vis Exp ; (196)2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37335104

RESUMO

Most physiological and disease processes, from central metabolism to immune response to neurodegeneration, involve mitochondria. The mitochondrial proteome is composed of more than 1,000 proteins, and the abundance of each can vary dynamically in response to external stimuli or during disease progression. Here, we describe a protocol for isolating high-quality mitochondria from primary cells and tissues. The two-step procedure comprises (1) mechanical homogenization and differential centrifugation to isolate crude mitochondria, and (2) tag-free immune capture of mitochondria to isolate pure organelles and eliminate contaminants. Mitochondrial proteins from each purification stage are analyzed by quantitative mass spectrometry, and enrichment yields are calculated, allowing the discovery of novel mitochondrial proteins by subtractive proteomics. Our protocol provides a sensitive and comprehensive approach to studying mitochondrial content in cell lines, primary cells, and tissues.


Assuntos
Mitocôndrias , Organelas , Mitocôndrias/metabolismo , Organelas/metabolismo , Espectrometria de Massas , Linhagem Celular , Proteínas Mitocondriais/metabolismo , Proteoma/análise
3.
Methods Mol Biol ; 2661: 329-342, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166646

RESUMO

Pooled genetic screens have revolutionized the field of functional genomics, yet perturbations that decrease fitness, such as those leading to synthetic lethality, have remained difficult to quantify at the genomic level. We and colleagues previously developed "death screening," a protocol based on the purification of dead cells in genetic screens, and used it to identify a set of genes necessary for mitochondrial gene expression, translation, and oxidative phosphorylation (OXPHOS), thus offering new possibilities for the diagnosis of mitochondrial disorders. Here, we describe Dead-Seq, a refined protocol for death screening that is compatible with most pooled screening protocols, including genome-wide CRISPR/Cas9 screening. Dead-Seq converts negative-selection screens into positive-selection screens and generates high-quality data directly from dead cells, at limited sequencing costs.


Assuntos
Genoma , Genômica , Genômica/métodos , Testes Genéticos/métodos , Sistemas CRISPR-Cas
4.
Nat Metab ; 5(5): 765-776, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37198474

RESUMO

Glucose is vital for life, serving as both a source of energy and carbon building block for growth. When glucose is limiting, alternative nutrients must be harnessed. To identify mechanisms by which cells can tolerate complete loss of glucose, we performed nutrient-sensitized genome-wide genetic screens and a PRISM growth assay across 482 cancer cell lines. We report that catabolism of uridine from the medium enables the growth of cells in the complete absence of glucose. While previous studies have shown that uridine can be salvaged to support pyrimidine synthesis in the setting of mitochondrial oxidative phosphorylation deficiency1, our work demonstrates that the ribose moiety of uridine or RNA can be salvaged to fulfil energy requirements via a pathway based on: (1) the phosphorylytic cleavage of uridine by uridine phosphorylase UPP1/UPP2 into uracil and ribose-1-phosphate (R1P), (2) the conversion of uridine-derived R1P into fructose-6-P and glyceraldehyde-3-P by the non-oxidative branch of the pentose phosphate pathway and (3) their glycolytic utilization to fuel ATP production, biosynthesis and gluconeogenesis. Capacity for glycolysis from uridine-derived ribose appears widespread, and we confirm its activity in cancer lineages, primary macrophages and mice in vivo. An interesting property of this pathway is that R1P enters downstream of the initial, highly regulated steps of glucose transport and upper glycolysis. We anticipate that 'uridine bypass' of upper glycolysis could be important in the context of disease and even exploited for therapeutic purposes.


Assuntos
Ribose , Uridina , Ribose/metabolismo , Uridina/metabolismo , RNA/metabolismo , Glicólise , Humanos , Linhagem Celular Tumoral , Fosforilação Oxidativa , Meios de Cultura , Glucose , Células K562 , Proliferação de Células , Via de Pentose Fosfato
5.
BMC Genomics ; 23(1): 402, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619054

RESUMO

CRISPR-Cas9 screening libraries have arisen as a powerful tool to identify protein-coding (pc) and non-coding genes playing a role along different processes. In particular, the usage of a nuclease active Cas9 coupled to a single gRNA has proven to efficiently impair the expression of pc-genes by generating deleterious frameshifts. Here, we first demonstrate that targeting the same gene simultaneously with two guide RNAs (paired guide RNAs, pgRNAs) synergistically enhances the capacity of the CRISPR-Cas9 system to knock out pc-genes. We next design a library to target, in parallel, pc-genes and lncRNAs known to change expression during the transdifferentiation from pre-B cells to macrophages. We show that this system is able to identify known players in this process, and also predicts 26 potential novel ones, of which we select four (two pc-genes and two lncRNAs) for deeper characterization. Our results suggest that in the case of the candidate lncRNAs, their impact in transdifferentiation may be actually mediated by enhancer regions at the targeted loci, rather than by the lncRNA transcripts themselves. The CRISPR-Cas9 coupled to a pgRNAs system is, therefore, a suitable tool to simultaneously target pc-genes and lncRNAs for genomic perturbation assays.


Assuntos
RNA Guia de Cinetoplastídeos , RNA Longo não Codificante , Sistemas CRISPR-Cas , Transdiferenciação Celular , Humanos , Macrófagos , RNA Guia de Cinetoplastídeos/genética , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA