Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814515

RESUMO

Real-time bioimaging of infectious disease processes may aid countermeasure development and lead to an improved understanding of pathogenesis. However, few studies have identified biomarkers for monitoring infections using in vivo imaging. Previously, we demonstrated that positron emission tomography/computed tomography (PET/CT) imaging with [18F]-fluorodeoxyglucose (FDG) can monitor monkeypox disease progression in vivo in nonhuman primates (NHPs). In this study, we investigated [18F]-FDG-PET/CT imaging of immune processes in lymphoid tissues to identify patterns of inflammation in the monkepox NHP model and to determine the value of [18F]-FDG-PET/CT as a biomarker for disease and treatment outcomes. Quantitative analysis of [18F]-FDG-PET/CT images revealed differences between moribund and surviving animals at two sites vital to the immune response to viral infections, bone marrow and lymph nodes (LNs). Moribund NHPs demonstrated increased [18F]-FDG uptake in bone marrow 4 days postinfection compared to surviving NHPs. In surviving, treated NHPs, increase in LN volume correlated with [18F]-FDG uptake and peaked 10 days postinfection, while minimal lymphadenopathy and higher glycolytic activity were observed in moribund NHPs early in infection. Imaging data were supported by standard virology, pathology, and immunology findings. Even with the limited number of subjects, imaging was able to differentiate the difference between disease outcomes, warranting additional studies to demonstrate whether [18F]-FDG-PET/CT can identify other, subtler effects. Visualizing altered metabolic activity at sites involved in the immune response by [18F]-FDG-PET/CT imaging is a powerful tool for identifying key disease-specific time points and locations that are most relevant for pathogenesis and treatment.IMPORTANCE Positron emission tomography and computed tomography (PET/CT) imaging is a universal tool in oncology and neuroscience. The application of this technology to infectious diseases is far less developed. We used PET/CT imaging with [18F]-labeled fluorodeoxyglucose ([18F]-FDG) in monkeys after monkeypox virus exposure to monitor the immune response in lymphoid tissues. In lymph nodes of surviving monkeys, changes in [18F]-FDG uptake positively correlated with enlargement of the lymph nodes and peaked on day 10 postinfection. In contrast, the bone marrow and lymph nodes of nonsurvivors showed increased [18F]-FDG uptake by day 4 postinfection with minimal lymph node enlargement, indicating that elevated cell metabolic activity early after infection is predictive of disease outcome. [18F]-FDG-PET/CT imaging can provide real-time snapshots of metabolic activity changes in response to viral infections and identify key time points and locations most relevant for monitoring the development of pathogenesis and for potential treatment to be effective.


Assuntos
Citosina/análogos & derivados , Fluordesoxiglucose F18/metabolismo , Linfadenopatia/patologia , Tecido Linfoide/patologia , Monkeypox virus/patogenicidade , Mpox/patologia , Organofosfonatos/farmacologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Antivirais/farmacologia , Medula Óssea/diagnóstico por imagem , Medula Óssea/efeitos dos fármacos , Medula Óssea/patologia , Cidofovir , Citosina/farmacologia , Linfadenopatia/diagnóstico por imagem , Tecido Linfoide/diagnóstico por imagem , Tecido Linfoide/efeitos dos fármacos , Macaca mulatta/virologia , Masculino , Mpox/diagnóstico por imagem , Mpox/tratamento farmacológico , Mpox/virologia , Prognóstico , Compostos Radiofarmacêuticos/metabolismo , Taxa de Sobrevida
2.
J Gen Virol ; 97(8): 1942-1954, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27166137

RESUMO

We previously demonstrated that small-particle (0.5-3.0 µm) aerosol infection of rhesus monkeys (Macaca mulatta) with cowpox virus (CPXV)-Brighton Red (BR) results in fulminant respiratory tract disease characterized by severe lung parenchymal pathology but only limited systemic virus dissemination and limited classic epidermal pox-like lesion development (Johnson et al., 2015). Based on these results, and to further develop CPXV as an improved model of human smallpox, we evaluated a novel large-particle aerosol (7.0-9.0 µm) exposure of rhesus monkeys to CPXV-BR and monitored for respiratory tract disease by serial computed tomography (CT). As expected, the upper respiratory tract and large airways were the major sites of virus-induced pathology following large-particle aerosol exposure. Large-particle aerosol CPXV exposure of rhesus macaques resulted in severe upper airway and large airway pathology with limited systemic dissemination.


Assuntos
Aerossóis , Vírus da Varíola Bovina/patogenicidade , Varíola Bovina/patologia , Varíola Bovina/virologia , Modelos Animais de Doenças , Infecções Respiratórias/patologia , Infecções Respiratórias/virologia , Animais , Macaca mulatta , Infecções Respiratórias/diagnóstico por imagem , Tomografia Computadorizada por Raios X
3.
J Infect Dis ; 212 Suppl 2: S414-24, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26063224

RESUMO

We previously described the generation of a novel Ebola virus (EBOV) vaccine based on inactivated rabies virus (RABV) containing EBOV glycoprotein (GP) incorporated in the RABV virion. Our results demonstrated safety, immunogenicity, and protective efficacy in mice and nonhuman primates (NHPs). Protection against viral challenge depended largely on the quality of the humoral immune response against EBOV GP.Here we present the extension and improvement of this vaccine by increasing the amount of GP incorporation into virions via GP codon-optimization as well as the addition of Sudan virus (SUDV) and Marburg virus (MARV) GP containing virions. Immunogenicity studies in mice indicate similar immune responses for both SUDV GP and MARV GP compared to EBOV GP. Immunizing mice with multiple antigens resulted in immune responses similar to immunization with a single antigen. Moreover, immunization of NHP with the new inactivated RABV EBOV vaccine resulted in high titer neutralizing antibody levels and 100% protection against lethal EBOV challenge when applied with adjuvant.Our results indicate that an inactivated polyvalent vaccine against RABV filoviruses is achievable. Finally, the novel vaccines are produced on approved VERO cells and a clinical grade RABV/EBOV vaccine for human trials has been produced.


Assuntos
Filoviridae/imunologia , Vacina Antirrábica/imunologia , Vírus da Raiva/imunologia , Raiva/imunologia , Vacinas de Produtos Inativados/imunologia , Animais , Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Chlorocebus aethiops , Avaliação Pré-Clínica de Medicamentos/métodos , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/virologia , Macaca fascicularis , Marburgvirus/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Raiva/virologia , Sudão , Vacinação/métodos , Células Vero
4.
Virology ; 481: 124-35, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25776759

RESUMO

Cowpox virus (CPXV) inoculation of nonhuman primates (NHPs) has been suggested as an alternate model for smallpox (Kramski et al., 2010, PLoS One, 5, e10412). Previously, we have demonstrated that intrabronchial inoculation of CPXV-Brighton Red (CPXV-BR) into cynomolgus monkeys resulted in a disease that shared many similarities to smallpox; however, severe respiratory tract disease was observed (Smith et al., 2011, J. Gen. Virol.). Here we describe the course of disease after small particle aerosol exposure of rhesus monkeys using computed tomography (CT) to monitor respiratory disease progression. Subjects developed a severe respiratory disease that was uniformly lethal at 5.7 log10 PFU of CPXV-BR. CT indicated changes in lung architecture that correlated with changes in peripheral blood monocytes and peripheral oxygen saturation. While the small particle aerosol inoculation route does not accurately mimic human smallpox, the data suggest that CT can be used as a tool to monitor real-time disease progression for evaluation of animal models for human diseases.


Assuntos
Vírus da Varíola Bovina/fisiologia , Modelos Animais de Doenças , Macaca mulatta , Doenças Respiratórias/virologia , Aerossóis/análise , Animais , Varíola Bovina/imunologia , Varíola Bovina/mortalidade , Varíola Bovina/patologia , Varíola Bovina/virologia , Vírus da Varíola Bovina/patogenicidade , Feminino , Humanos , Masculino , Monócitos/virologia , Sistema Respiratório/imunologia , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/mortalidade , Doenças Respiratórias/patologia , Virulência
5.
Virus Res ; 197: 54-8, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25481284

RESUMO

Using a recombinant rabies (RABV) vaccine platform, we have developed several safe and effective vaccines. Most recently, we have developed a RABV-based ebolavirus (EBOV) vaccine that is efficacious in nonhuman primates. One safety feature of this vaccine is the utilization of a live but replication-deficient RABV construct. In this construct, the RABV glycoprotein (G) has been deleted from the genome, requiring G trans complementation in order for new infectious viruses to be released from the initial infected cell. Here we analyze this safety feature of the bivalent RABV-based EBOV vaccine comprised of the G-deleted RABV backbone expressing EBOV glycoprotein (GP). We found that, while the level of RABV genome in infected cells is equivalent regardless of G supplementation, the production of infectious virus is indeed restricted by the lack of G, and most importantly, that the presence of EBOV GP does not substitute for G. These findings further support the safety profile of this replication-deficient RABV-EBOV bivalent vaccine.


Assuntos
Antígenos Virais/biossíntese , Vacinas contra Ebola/imunologia , Expressão Gênica , Glicoproteínas/biossíntese , Vacina Antirrábica/imunologia , Proteínas do Envelope Viral/biossíntese , Proteínas do Envelope Viral/imunologia , Animais , Antígenos Virais/genética , Vacinas contra Ebola/genética , Deleção de Genes , Teste de Complementação Genética , Glicoproteínas/genética , Doença pelo Vírus Ebola/prevenção & controle , Primatas , Raiva/prevenção & controle , Vacina Antirrábica/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/genética
6.
Clin Vaccine Immunol ; 21(8): 1145-52, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24943381

RESUMO

The identification of host or pathogen factors linked to clinical outcome is a common goal in many animal studies of infectious diseases. When the disease is fatal, statistical analysis of such factors may be biased from missing observations due to deaths. For example, when observations of a subject are censored before completing the intended study period, the complete trajectory will not be observed. Even if the factor is not associated with outcome, comparisons of data from survivors with those from nonsurvivors may lead to the wrong conclusions regarding associations with survival. Comparisons between subjects must account for differing observation lengths for those who survive relative to those who do not. Analyzing data over an interval common to all subjects provides one solution but requires eliminating data, some of which may be informative about the differences between groups. Here, we present a novel approach, matched longitudinal analysis (MLA), for analyzing such data based on matching biomarker intervals for survivors and nonsurvivors. We describe the results from simulation studies and from a study of monkeypox virus infection in nonhuman primates. In our application, MLA identified low monocyte chemoattractant protein-1 (MCP-1) levels as having a statistically significant association with survival, whereas the alternative methods did not identify an association. The method has general application to longitudinal studies that seek to find associations of biomarker changes with survival.


Assuntos
Quimiocina CCL2/sangue , Monkeypox virus/imunologia , Infecções por Poxviridae/mortalidade , Animais , Biomarcadores , Interações Hospedeiro-Patógeno , Macaca fascicularis , Análise por Pareamento , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/virologia
7.
J Virol ; 88(17): 9877-92, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24942569

RESUMO

UNLABELLED: Ebola virus (EBOV) causes a severe hemorrhagic disease in humans and nonhuman primates, with a median case fatality rate of 78.4%. Although EBOV is considered a public health concern, there is a relative paucity of information regarding the modulation of the functional host response during infection. We employed temporal kinome analysis to investigate the relative early, intermediate, and late host kinome responses to EBOV infection in human hepatocytes. Pathway overrepresentation analysis and functional network analysis of kinome data revealed that transforming growth factor (TGF-ß)-mediated signaling responses were temporally modulated in response to EBOV infection. Upregulation of TGF-ß signaling in the kinome data sets correlated with the upregulation of TGF-ß secretion from EBOV-infected cells. Kinase inhibitors targeting TGF-ß signaling, or additional cell receptors and downstream signaling pathway intermediates identified from our kinome analysis, also inhibited EBOV replication. Further, the inhibition of select cell signaling intermediates identified from our kinome analysis provided partial protection in a lethal model of EBOV infection. To gain perspective on the cellular consequence of TGF-ß signaling modulation during EBOV infection, we assessed cellular markers associated with upregulation of TGF-ß signaling. We observed upregulation of matrix metalloproteinase 9, N-cadherin, and fibronectin expression with concomitant reductions in the expression of E-cadherin and claudin-1, responses that are standard characteristics of an epithelium-to-mesenchyme-like transition. Additionally, we identified phosphorylation events downstream of TGF-ß that may contribute to this process. From these observations, we propose a model for a broader role of TGF-ß-mediated signaling responses in the pathogenesis of Ebola virus disease. IMPORTANCE: Ebola virus (EBOV), formerly Zaire ebolavirus, causes a severe hemorrhagic disease in humans and nonhuman primates and is the most lethal Ebola virus species, with case fatality rates of up to 90%. Although EBOV is considered a worldwide concern, many questions remain regarding EBOV molecular pathogenesis. As it is appreciated that many cellular processes are regulated through kinase-mediated phosphorylation events, we employed temporal kinome analysis to investigate the functional responses of human hepatocytes to EBOV infection. Administration of kinase inhibitors targeting signaling pathway intermediates identified in our kinome analysis inhibited viral replication in vitro and reduced EBOV pathogenesis in vivo. Further analysis of our data also demonstrated that EBOV infection modulated TGF-ß-mediated signaling responses and promoted "mesenchyme-like" phenotypic changes. Taken together, these results demonstrated that EBOV infection specifically modulates TGF-ß-mediated signaling responses in epithelial cells and may have broader implications in EBOV pathogenesis.


Assuntos
Diferenciação Celular , Ebolavirus/fisiologia , Hepatócitos/fisiologia , Interações Hospedeiro-Patógeno , Mesoderma/crescimento & desenvolvimento , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Doença pelo Vírus Ebola/patologia , Humanos , Camundongos Endogâmicos BALB C
8.
EJNMMI Res ; 4(1): 49, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26116113

RESUMO

BACKGROUND: 2-deoxy-2-[(18)F]fluoro-D-glucose-positron emission tomography ((18)F-FDG-PET) is applied in the clinic for infection assessment and is under consideration for investigating the inflammatory/immune response in lymphoid tissue in animal models of viral infection. Assessing changes in (18)F-FDG uptake of lymph nodes (LNs), primary lymphoid tissues targeted during viral infection, requires suitable methods for image analysis. Similar to tumor evaluation, reliable quantitation of the LN function via multiple (18)F-FDG-PET sessions will depend how the volume of interest is defined. Volume of interest definition has a direct effect on statistical outcome. The current study objective is to compare for the first time agreement between conventional and modified VOI metrics to determine which method(s) provide(s) reproducible standardized uptake values (SUVs) for (18)F-FDG uptake in the LN of rhesus macaques. METHODS: Multiple (18)F-FDG-PET images of LNs in macaques were acquired prior to and after monkeypox virus intravenous inoculation. We compared five image analysis approaches, SUVmax, SUVmean, SUVthreshold, modified SUVthreshold, and SUVfixed volume, to investigate the impact of these approaches on quantification of the changes in LN metabolic activity denoting the immune response during viral infection progression. RESULTS: The lowest data repeatability was observed with SUVmax. The best correspondence was between SUVfixed volume and conventional and modified SUVthreshold. A statistically significant difference in the LN (18)F-FDG uptake between surviving and moribund animals was shown using modified SUVthreshold and SUVfixed volume (adjusted p = 0.0037 and p = 0.0001, respectively). CONCLUSIONS: Quantification of the LN (18)F-FDG uptake is highly sensitive to the method applied for PET image analysis. SUVfixed volume and modified SUVthreshold demonstrate better reproducibility for SUV estimates than SUVmax, SUVmean, and SUVthreshold. SUVfixed volume and modified SUVthreshold are capable of distinguishing between groups with different disease outcomes. Therefore, these methods are the preferred approaches for evaluating the LN function during viral infection by (18)F-FDG-PET. Validation of multiple approaches is necessary to choose a suitable method to monitor changes in LN metabolic activity during progression of viral infection.

9.
Virology ; 447(1-2): 181-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24210113

RESUMO

To characterize T cell epitopes in monkeypox virus (MPXV) infected rhesus macaques, we utilized IFNγ Elispot assay to screen 400 predicted peptides from 20MPXV proteins. Two peptides from the F8L protein, an analog of E9L protein in vaccinia, were found to elicit CD8+ T cell responses. Prediction and in vitro MHC binding analyses suggest that one is restricted by Mamu-A1(⁎)001 and another by Mamu-A1(⁎)002. The Mamu-A1(⁎)002 epitope is completely identical in all reported sequences for variola, vaccinia, cowpox and MPXV. The Mamu-A1(⁎)001 epitope is conserved in MPXV and vaccinia, and has one residue substitution (V6>I) in some cowpox sequences and all variola sequences. Given CD8+ T-cell epitopes from E9L were also identified in humans and mice, our data suggested that F8L/E9L may be a dominant pox viral protein for CD8+ T cell responses, and may be considered as a target when designing vaccines that target pox-specific T cell responses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Monkeypox virus/imunologia , Animais , ELISPOT , Antígenos de Histocompatibilidade Classe I/metabolismo , Interferon gama/metabolismo , Macaca mulatta , Ligação Proteica
10.
PLoS One ; 8(10): e77804, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24147080

RESUMO

Natural killer (NK) cells play critical roles in innate immunity and in bridging innate and adaptive immune responses against viral infection. However, the response of NK cells to monkeypox virus (MPXV) infection is not well characterized. In this intravenous challenge study of MPXV infection in rhesus macaques (Macaca mulatta), we analyzed blood and lymph node NK cell changes in absolute cell numbers, cell proliferation, chemokine receptor expression, and cellular functions. Our results showed that the absolute number of total NK cells in the blood increased in response to MPXV infection at a magnitude of 23-fold, manifested by increases in CD56+, CD16+, CD16-CD56- double negative, and CD16+CD56+ double positive NK cell subsets. Similarly, the frequency and NK cell numbers in the lymph nodes also largely increased with the total NK cell number increasing 46.1-fold. NK cells both in the blood and lymph nodes massively proliferated in response to MPXV infection as measured by Ki67 expression. Chemokine receptor analysis revealed reduced expression of CXCR3, CCR7, and CCR6 on NK cells at early time points (days 2 and 4 after virus inoculation), followed by an increased expression of CXCR3 and CCR5 at later time points (days 7-8) of infection. In addition, MPXV infection impaired NK cell degranulation and ablated secretion of interferon-γ and tumor necrosis factor-α. Our data suggest a dynamic model by which NK cells respond to MPXV infection of rhesus macaques. Upon virus infection, NK cells proliferated robustly, resulting in massive increases in NK cell numbers. However, the migrating capacity of NK cells to tissues at early time points might be reduced, and the functions of cytotoxicity and cytokine secretion were largely compromised. Collectively, the data may explain, at least partially, the pathogenesis of MPXV infection in rhesus macaques.


Assuntos
Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Macaca mulatta/imunologia , Macaca mulatta/virologia , Monkeypox virus/imunologia , Monkeypox virus/patogenicidade , Infecções por Poxviridae/imunologia , Animais , Antígeno CD56/metabolismo , Infecções por Poxviridae/metabolismo , Receptores CCR6/metabolismo , Receptores CCR7/metabolismo , Receptores CXCR3/metabolismo , Receptores de IgG/metabolismo
11.
PLoS Pathog ; 9(5): e1003389, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23737747

RESUMO

We have previously described the generation of a novel Ebola virus (EBOV) vaccine platform based on (a) replication-competent rabies virus (RABV), (b) replication-deficient RABV, or (c) chemically inactivated RABV expressing EBOV glycoprotein (GP). Mouse studies demonstrated safety, immunogenicity, and protective efficacy of these live or inactivated RABV/EBOV vaccines. Here, we evaluated these vaccines in nonhuman primates. Our results indicate that all three vaccines do induce potent immune responses against both RABV and EBOV, while the protection of immunized animals against EBOV was largely dependent on the quality of humoral immune response against EBOV GP. We also determined if the induced antibodies against EBOV GP differ in their target, affinity, or the isotype. Our results show that IgG1-biased humoral responses as well as high levels of GP-specific antibodies were beneficial for the control of EBOV infection after immunization. These results further support the concept that a successful EBOV vaccine needs to induce strong antibodies against EBOV. We also showed that a dual vaccine against RABV and filoviruses is achievable; therefore addressing concerns for the marketability of this urgently needed vaccine.


Assuntos
Anticorpos Antivirais/imunologia , Vacinas contra Ebola , Ebolavirus , Doença pelo Vírus Ebola , Imunoglobulina G/imunologia , Vacina Antirrábica , Vírus da Raiva , Proteínas da Matriz Viral , Animais , Vacinas contra Ebola/genética , Vacinas contra Ebola/imunologia , Vacinas contra Ebola/farmacologia , Ebolavirus/genética , Ebolavirus/imunologia , Feminino , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Macaca mulatta , Masculino , Camundongos , Vacina Antirrábica/genética , Vacina Antirrábica/imunologia , Vacina Antirrábica/farmacologia , Vírus da Raiva/genética , Vírus da Raiva/imunologia , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/farmacologia
12.
PLoS One ; 8(4): e60533, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23577120

RESUMO

Infection of non-human primates (NHPs) such as rhesus and cynomolgus macaques with monkeypox virus (MPXV) or cowpox virus (CPXV) serve as models to study poxvirus pathogenesis and to evaluate vaccines and anti-orthopox therapeutics. Intravenous inoculation of macaques with high dose of MPXV (>1-2×10(7) PFU) or CPXV (>10(2) PFU) results in 80% to 100% mortality and 66 to 100% mortality respectively. Here we report that NHPs with positive detection of poxvirus antigens in immune cells by flow cytometric staining, especially in monocytes and granulocytes succumbed to virus infection and that early positive pox staining is a strong predictor for lethality. Samples from four independent studies were analyzed. Eighteen NHPs from three different experiments were inoculated with two different MPXV strains at lethal doses. Ten NHPs displayed positive pox-staining and all 10 NHPs reached moribund endpoint. In contrast, none of the three NHPs that survived anticipated lethal virus dose showed apparent virus staining in the monocytes and granulocytes. In addition, three NHPs that were challenged with a lethal dose of MPXV and received cidofovir treatment were pox-antigen negative and all three NHPs survived. Furthermore, data from a CPXV study also demonstrated that 6/9 NHPs were pox-antigen staining positive and all 6 NHPs reached euthanasia endpoint, while the three survivors were pox-antigen staining negative. Thus, we conclude that monitoring pox-antigen staining in immune cells can be used as a biomarker to predict the prognosis of virus infection. Future studies should focus on the mechanisms and implications of the pox-infection of immune cells and the correlation between pox-antigen detection in immune cells and disease progression in human poxviral infection.


Assuntos
Antígenos Virais/metabolismo , Varíola Bovina/imunologia , Monócitos/imunologia , Mpox/imunologia , Neutrófilos/imunologia , Poxviridae/imunologia , Poxviridae/fisiologia , Animais , Antígenos Virais/imunologia , Biomarcadores/sangue , Linhagem Celular , Varíola Bovina/diagnóstico , DNA Viral/sangue , Progressão da Doença , Diagnóstico Precoce , Feminino , Espaço Intracelular/imunologia , Macaca mulatta , Masculino , Mpox/diagnóstico , Monócitos/citologia , Neutrófilos/citologia , Prognóstico , Coloração e Rotulagem , Vacinas Virais/imunologia
13.
Virology ; 434(1): 18-26, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22889613

RESUMO

We are developing inactivated and live-attenuated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein for use in humans and endangered wildlife, respectively. Here, we further characterize the pathogenesis of the live-attenuated RABV/EBOV vaccine candidates in mice in an effort to define their growth properties and potential for safety. RABV vaccines expressing GP (RV-GP) or a replication-deficient derivative with a deletion of the RABV G gene (RVΔG-GP) are both avirulent after intracerebral inoculation of adult mice. Furthermore, RVΔG-GP is completely avirulent upon intracerebral inoculation of suckling mice unlike parental RABV vaccine or RV-GP. Analysis of RVΔG-GP in the brain by quantitative PCR, determination of virus titer, and immunohistochemistry indicated greatly restricted virus replication. In summary, our findings indicate that RV-GP retains the attenuation phenotype of the live-attenuated RABV vaccine, and RVΔG-GP would appear to be an even safer alternative for use in wildlife or consideration for human use.


Assuntos
Vacinas contra Ebola/efeitos adversos , Vacinas contra Ebola/imunologia , Vacina Antirrábica/efeitos adversos , Vacina Antirrábica/imunologia , Animais , Animais Recém-Nascidos , Encéfalo/patologia , Encéfalo/virologia , Modelos Animais de Doenças , Vacinas contra Ebola/genética , Feminino , Deleção de Genes , Genes Virais , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Vacina Antirrábica/genética , Reação em Cadeia da Polimerase em Tempo Real , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Carga Viral , Virulência
14.
Vaccine ; 30(43): 6136-41, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22884661

RESUMO

We have previously developed (a) replication-competent, (b) replication-deficient, and (c) chemically inactivated rabies virus (RABV) vaccines expressing Ebola virus (EBOV) glycoprotein (GP) that induce humoral immunity against each virus and confer protection from both lethal RABV and mouse-adapted EBOV challenge in mice. Here, we expand our investigation of the immunogenic properties of these bivalent vaccines in mice. Both live and killed vaccines induced primary EBOV GP-specific T-cells and a robust recall response as measured by interferon-γ ELISPOT assay. In addition to cellular immunity, an effective filovirus vaccine will likely require a multivalent humoral immune response against multiple virus species. As a proof-of-principle experiment, we demonstrated that inactivated RV-GP could be formulated with another inactivated RABV vaccine expressing the nontoxic fragment of botulinum neurotoxin A heavy chain (HC50) without a reduction in immunity to each component. Finally, we demonstrated that humoral immunity to GP could be induced by immunization of mice with inactivated RV-GP in the presence of pre-existing immunity to RABV. The ability of these novel vaccines to induce strong humoral and cellular immunity indicates that they should be further evaluated in additional animal models of infection.


Assuntos
Especificidade de Anticorpos , Vacinas contra Ebola/imunologia , Doença pelo Vírus Ebola/prevenção & controle , Glicoproteínas de Membrana/imunologia , Vacina Antirrábica/imunologia , Proteínas da Matriz Viral/imunologia , Animais , Anticorpos Antivirais/sangue , Ebolavirus/imunologia , Imunidade Celular , Imunidade Humoral , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Linfócitos T/imunologia , Vacinas de Produtos Inativados/imunologia
15.
Virol J ; 9: 6, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22225618

RESUMO

BACKGROUND: The EB peptide is a 20-mer that was previously shown to have broad spectrum in vitro activity against several unrelated viruses, including highly pathogenic avian influenza, herpes simplex virus type I, and vaccinia, the prototypic orthopoxvirus. To expand on this work, we evaluated EB for in vitro activity against the zoonotic orthopoxviruses cowpox and monkeypox and for in vivo activity in mice against vaccinia and cowpox. FINDINGS: In yield reduction assays, EB had an EC50 of 26.7 µM against cowpox and 4.4 µM against monkeypox. The EC50 for plaque reduction was 26.3 µM against cowpox and 48.6 µM against monkeypox. A scrambled peptide had no inhibitory activity against either virus. EB inhibited cowpox in vitro by disrupting virus entry, as evidenced by a reduction of the release of virus cores into the cytoplasm. Monkeypox was also inhibited in vitro by EB, but at the attachment stage of infection. EB showed protective activity in mice infected intranasally with vaccinia when co-administered with the virus, but had no effect when administered prophylactically one day prior to infection or therapeutically one day post-infection. EB had no in vivo activity against cowpox in mice. CONCLUSIONS: While EB did demonstrate some in vivo efficacy against vaccinia in mice, the limited conditions under which it was effective against vaccinia and lack of activity against cowpox suggest EB may be more useful for studying orthopoxvirus entry and attachment in vitro than as a therapeutic against orthopoxviruses in vivo.


Assuntos
Antivirais/farmacologia , Vírus da Varíola Bovina/efeitos dos fármacos , Varíola Bovina/tratamento farmacológico , Vírus da Ectromelia/efeitos dos fármacos , Fator 4 de Crescimento de Fibroblastos/farmacologia , Oligopeptídeos/farmacologia , Vacínia/tratamento farmacológico , Animais , Antivirais/administração & dosagem , Modelos Animais de Doenças , Fator 4 de Crescimento de Fibroblastos/administração & dosagem , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Oligopeptídeos/administração & dosagem , Análise de Sobrevida , Resultado do Tratamento , Carga Viral , Ensaio de Placa Viral , Ligação Viral/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos
16.
Antiviral Res ; 93(2): 305-308, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22182595

RESUMO

Mitoxantrone, an FDA-approved therapeutic for the treatment of cancer and multiple sclerosis, was previously reported to exhibit antiviral activity against vaccinia virus. To determine whether this activity extends to other orthopoxviruses, mitoxantrone was tested against cowpox and monkeypox. Mitoxantrone demonstrated an EC(50) of 0.25 µM against cowpox and 0.8 µM against monkeypox. Intraperitoneal treatment of cowpox virus-challenged C57Bl/6 mice with 0.5 mg/kg mitoxantrone resulted in 25% survival and a significant increase in survival time. In an effort to improve its efficacy, mitoxantrone was tested for synergistic activity with cidofovir. In vitro tests demonstrated significant synergy between the two drugs against cowpox; however, no synergistic effect on animal survival or median time-to-death was seen in intranasally-infected BALB/c mice. Significantly fewer animals survived when treated with a combination of 0.5 mg/kg mitoxantrone and 100 mg/kg cidofovir than with 100 mg/kg cidofovir alone. This is, to our knowledge, the first report of limited anti-orthopoxvirus activity by mitoxantrone in an animal model.


Assuntos
Antivirais/farmacologia , Vírus da Varíola Bovina/efeitos dos fármacos , Varíola Bovina/virologia , Mitoxantrona/farmacologia , Monkeypox virus/efeitos dos fármacos , Mpox/virologia , Animais , Varíola Bovina/tratamento farmacológico , Vírus da Varíola Bovina/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mpox/tratamento farmacológico , Monkeypox virus/fisiologia
17.
Mol Cell Proteomics ; 11(6): M111.015701, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22205724

RESUMO

Monkeypox virus (MPXV) is comprised of two clades: Congo Basin MPXV, with an associated case fatality rate of 10%, and Western African MPXV, which is associated with less severe infection and minimal lethality. We thus postulated that Congo Basin and West African MPXV would differentially modulate host cell responses and, as many host responses are regulated through phosphorylation independent of transcription or translation, we employed systems kinomics with peptide arrays to investigate these functional host responses. Using this approach we have demonstrated that Congo Basin MPXV infection selectively down-regulates host responses as compared with West African MPXV, including growth factor- and apoptosis-related responses. These results were confirmed using fluorescence-activated cell sorting analysis demonstrating that West African MPXV infection resulted in a significant increase in apoptosis in human monocytes as compared with Congo Basin MPXV. Further, differentially phosphorylated kinases were identified through comparison of our MPXV data sets and validated as potential targets for pharmacological inhibition of Congo Basin MPXV infection, including increased Akt S473 phosphorylation and decreased p53 S15 phosphorylation. Inhibition of Akt S473 phosphorylation resulted in a significant decrease in Congo Basin MPXV virus yield (261-fold) but did not affect West African MPXV. In addition, treatment with staurosporine, an apoptosis activator resulted in a 49-fold greater decrease in Congo Basin MPXV yields as compared with West African MPXV. Thus, using a systems kinomics approach, our investigation demonstrates that West African and Congo Basin MPXV differentially modulate host cell responses and has identified potential host targets of therapeutic interest.


Assuntos
Monkeypox virus/fisiologia , Mpox/metabolismo , Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Proteoma/metabolismo , Animais , Apoptose , Linhagem Celular , Chlorocebus aethiops , Análise por Conglomerados , Interações Hospedeiro-Patógeno , Humanos , Imidazóis/farmacologia , Monócitos/enzimologia , Monócitos/metabolismo , Monócitos/virologia , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-met/metabolismo , Piridinas/farmacologia , Transdução de Sinais , Replicação Viral/efeitos dos fármacos
18.
J Gen Virol ; 93(Pt 1): 159-164, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21940414

RESUMO

The public health threat of orthopoxviruses from bioterrorist attacks has prompted researchers to develop suitable animal models for increasing our understanding of viral pathogenesis and evaluation of medical countermeasures (MCMs) in compliance with the FDA Animal Efficacy Rule. We present an accessible intrabronchial cowpox virus (CPXV) model that can be evaluated under biosafety level-2 laboratory conditions. In this dose-ranging study, utilizing cynomolgus macaques, signs of typical orthopoxvirus disease were observed with the lymphoid organs, liver, skin (generally mild) and respiratory tract as target tissues. Clinical and histopathological evaluation suggests that intrabronchial CPXV recapitulated many of the features of monkeypox and variola virus, the causative agent of smallpox, infections in cynomolgus macaque models. These similarities suggest that CPXV infection in non-human primates should be pursued further as an alternative model of smallpox. Further development of the CPXV primate model, unimpeded by select agent and biocontainment restrictions, should facilitate the development of MCMs for smallpox.


Assuntos
Vírus da Varíola Bovina/patogenicidade , Varíola Bovina/virologia , Modelos Animais de Doenças , Macaca fascicularis , Animais , Contenção de Riscos Biológicos , Varíola Bovina/patologia , Vírus da Varíola Bovina/fisiologia , Humanos , Varíola/patologia , Varíola/virologia , Virulência
19.
J Infect Dis ; 204(12): 1902-11, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22013221

RESUMO

Infection of nonhuman primates (NHPs) with monkeypox virus (MPXV) is currently being developed as an animal model of variola infection in humans. We used positron emission tomography and computed tomography (PET/CT) to identify inflammatory patterns as predictors for the outcome of MPXV disease in NHPs. Two NHPs were sublethally inoculated by the intravenous (IV) or intrabronchial (IB) routes and imaged sequentially using fluorine-18 fluorodeoxyglucose ((18)FDG) uptake as a nonspecific marker of inflammation/immune activation. Inflammation was observed in the lungs of IB-infected NHPs, and bilobular involvement was associated with morbidity. Lymphadenopathy and immune activation in the axillary lymph nodes were evident in IV- and IB-infected NHPs. Interestingly, the surviving NHPs had significant (18)FDG uptake in the axillary lymph nodes at the time of MPXV challenge with no clinical signs of illness, suggesting an association between preexisting immune activation and survival. Molecular imaging identified patterns of inflammation/immune activation that may allow risk assessment of monkeypox disease.


Assuntos
Progressão da Doença , Linfonodos/imunologia , Monkeypox virus/imunologia , Mpox/diagnóstico por imagem , Mpox/imunologia , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada por Raios X , Animais , Axila , Brônquios/virologia , Modelos Animais de Doenças , Feminino , Fluordesoxiglucose F18 , Injeções Intravenosas , Pulmão/diagnóstico por imagem , Pulmão/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Macaca fascicularis , Masculino , Mpox/complicações , Necrose/diagnóstico por imagem , Necrose/patologia , Pneumonia/diagnóstico por imagem , Pneumonia/virologia
20.
Virology ; 421(2): 129-40, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22014505

RESUMO

Simian Hemorrhagic Fever Virus (SHFV) has caused sporadic outbreaks of hemorrhagic fevers in macaques at primate research facilities. SHFV is a BSL-2 pathogen that has not been linked to human disease; as such, investigation of SHFV pathogenesis in non-human primates (NHPs) could serve as a model for hemorrhagic fever viruses such as Ebola, Marburg, and Lassa viruses. Here we describe the pathogenesis of SHFV in rhesus macaques inoculated with doses ranging from 50 PFU to 500,000 PFU. Disease severity was independent of dose with an overall mortality rate of 64% with signs of hemorrhagic fever and multiple organ system involvement. Analyses comparing survivors and non-survivors were performed to identify factors associated with survival revealing differences in the kinetics of viremia, immunosuppression, and regulation of hemostasis. Notable similarities between the pathogenesis of SHFV in NHPs and hemorrhagic fever viruses in humans suggest that SHFV may serve as a suitable model of BSL-4 pathogens.


Assuntos
Infecções por Arterivirus , Arterivirus , Modelos Animais de Doenças , Febres Hemorrágicas Virais , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Arterivirus/imunologia , Arterivirus/patogenicidade , Infecções por Arterivirus/sangue , Infecções por Arterivirus/imunologia , Infecções por Arterivirus/patologia , Infecções por Arterivirus/virologia , Quimiocinas/sangue , Citocinas/sangue , Febres Hemorrágicas Virais/sangue , Febres Hemorrágicas Virais/imunologia , Febres Hemorrágicas Virais/patologia , Febres Hemorrágicas Virais/virologia , Tolerância Imunológica , Macaca mulatta , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA