Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38004993

RESUMO

Nanoparticles of iron carbides and nitrides enclosed in graphite shells were obtained at 2 ÷ 8 GPa pressures and temperatures of around 800 °C from ferrocene and ferrocene-melamine mixture. The average core-shell particle size was below 60 nm. The graphite-like shells over the iron nitride cores were built of concentric graphene layers packed in a rhombohedral shape. It was found that at a pressure of 4 GPa and temperature of 800 °C, the stability of the nanoscale phases increases in a Fe7C3 > Fe3C > Fe3N1+x sequence and at 8 GPa in a Fe3C > Fe7C3 > Fe3N1+x sequence. At pressures of 2 ÷ 8 GPa and temperatures up to 1600 °C, iron nitride Fe3N1+x is more stable than iron carbides. At 8 GPa and 1600 °C, the average particle size of iron nitride increased to 0.5 ÷ 1 µm, while simultaneously formed free carbon particles had the shape of graphite discs with a size of 1 ÷ 2 µm. Structural refinement of the iron nitride using the Rietveld method gave the best result for the space group P6322. The refined composition of the samples obtained from a mixture of ferrocene and melamine at 8 GPa/800 °C corresponded to Fe3N1.208, and at 8 GPa/1650 °C to Fe3N1.259. The iron nitride core-shell nanoparticles exhibited magnetic behavior. Specific magnetization at 7.5 kOe of pure Fe3N1.208 was estimated to be 70 emu/g. Compared to other methods, the high-pressure method allows easy synthesis of the iron nitride cores inside pure carbon shells and control of the particle size. And in general, pressure is a good tool for modifying the phase and chemical composition of the iron-containing cores.

2.
Materials (Basel) ; 15(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36295441

RESUMO

Catalytic synthesis of carbon nanotubes (CNT) produces numerous various byproducts such as soot, graphite platelets, catalyst nanoparticles, etc. Identification of the byproduct formation mechanisms would help develop routes to more selective synthesis of better carbon-based materials. This work reports on the identification of the formation zone and conditions for rather unusual closed multishell carbon nanocapsules in a reactor for float-catalysis synthesis of longer CNT. Structural investigation of the formed nanocapsule material along with computational fluid dynamics (CFD) simulations of the reactor suggested a nanocapsule formation mechanism, in which CNT embryos are suppressed in growth by the in-reactor turbulence. By means of TEM and FFT investigation, it is found that differently oriented single crystals of γ-Fe2O3, which do not have clear connections with each other, determine a spherical surface. The carbon atoms that seep through these joints do not form crystalline graphite layers. The resulting additional product in the form of graphene-coated (γ-Fe/Fe3C)/γ-Fe2O3 nanoparticles can be a lightweight and effective microwave absorber.

3.
Nanotechnology ; 29(11): 115603, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-29339574

RESUMO

Phase diagrams of carbon, and those focusing on the graphite-to-diamond transitional conditions in particular, are of great interest for fundamental and applied research. The present study introduces a number of experiments carried out to convert graphite under high-pressure conditions, showing a formation of stable phase of fullerene-type onions cross-linked by sp3-bonds in the 55-115 GPa pressure range instead of diamonds formation (even at temperature 2000-3000 K) and the already formed diamonds turn into carbon onions. Our results refute the widespread idea that diamonds can form at any pressure from 2.2 to 1000 GPa. The phase diagram built within this study allows us not only to explain the existing numerous experimental data on the formation of diamond from graphite, but also to make assumptions about the conditions of its growth in Earth's crust.

4.
Planet Space Sci ; 131: 70-78, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32818000

RESUMO

We present a laboratory reproduction of hypervelocity impacts of a carbon containing meteorite on a mineral substance representative of planetary surfaces. The physical conditions of the resulting impact plasma torch provide favorable conditions for abiogenic synthesis of protein amino acids: We identified glycine and alanine, and in smaller quantities serine, in the produced material. Moreover, we observe breaking of alanine mirror symmetry with L excess, which coincides with the bioorganic world. Therefore the selection of L-amino acids for the formation of proteins for living matter could have been the result from plasma processes occurring during the impact meteorites on the surface. This indicates that the plasma torch from meteorite impacts could play an important role in the formation of biomolecular homochirality. Thus, meteorite impacts possibly were the initial stage of this process and promoted conditions for the emergence of a living matter.

5.
Rev Sci Instrum ; 85(6): 063106, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985798

RESUMO

A double-crystal diamond monochromator was recently implemented at the Linac Coherent Light Source. It enables splitting pulses generated by the free electron laser in the hard x-ray regime and thus allows the simultaneous operations of two instruments. Both monochromator crystals are High-Pressure High-Temperature grown type-IIa diamond crystal plates with the (111) orientation. The first crystal has a thickness of ~100 µm to allow high reflectivity within the Bragg bandwidth and good transmission for the other wavelengths for downstream use. The second crystal is about 300 µm thick and makes the exit beam of the monochromator parallel to the incoming beam with an offset of 600 mm. Here we present details on the monochromator design and its performance.

6.
Sci Technol Adv Mater ; 10(1): 015004, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27877267

RESUMO

The effect of an electron beam on nanoparticles of two Fe carbide catalysts inside a carbon nanofiber was investigated in a transmission electron microscope. Electron beam exposure does not result in significant changes for cementite (θ-Fe3C). However, for Hägg carbide nanoparticles (χ-Fe5C2), explosive decay is observed after exposure for 5-10 s. This produces small particles of cementite and γ-Fe, each covered with a multilayer carbon shell, and significantly modifies the carbon-fiber structure. It is considered that the decomposition of Hägg carbide is mostly due to the damage induced by high-energy electron collisions with the crystal lattice, accompanied by the heating of the particle and by mechanical stress provided by the carbon layers of the nanofiber.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA