Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833416

RESUMO

BACKGROUND AND SCOPE: Plant functional traits are the result of natural selection to optimize carbon gain, leading to a broad spectrum of traits across environmental gradients. Among plant traits, leaf water storage capacity is paramount for plant drought resistance. We explored whether leaf-succulent taxa follow similar trait correlations as non-leaf-succulent taxa to evaluate whether both are similarly constrained by relationships between leaf water storage and climate. We tested the relationships among three leaf traits related to water storage capacity and resource use strategies in 132 species comprising three primary leaf types: succulent, sclerophyllous, and leaves with rapid returns on water investment - referred to as fast return. Correlation coefficients among specific leaf area (SLA), water mass per unit of area (WMA), and saturated water content (SWC) were tested, along with relationships between leaf trait spectra and aridity determined from species occurrence records. CONCLUSION: Both SWC and WMA at a given SLA were approximately 10-fold higher in succulent leaves than in non-succulent leaves. While SWC actually increased with SLA in non-succulent leaves, no relationship was detected between SWC and SLA in succulent leaves, although WMA decreased with SLA in all leaf types. A principal component analysis revealed that succulent-taxa occupied a widely different mean trait space than either fast-return (P < 0.0001) and sclerophyllous taxa (P < 0.0001) along the first PCA axis, that explained 63% of mean trait expression among species. However, aridity only explained 12% of the variation in PCA1 values. This study is among the first to establish a structural leaf trait spectrum in succulent leaf taxa and quantify contrasts in leaf water storage among leaf types relative to specific leaf area. Results show that trait coordination in succulent leaf taxa may not follow similar patterns as widely studied non-succulent taxa.

2.
Plant Cell Environ ; 45(6): 1664-1681, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35147232

RESUMO

Leaf carbon gain optimization in hot environments requires balancing leaf thermoregulation with avoiding excessive water loss via transpiration and hydraulic failure. The tradeoffs between leaf thermoregulation and transpirational water loss can determine the ecological consequences of heat waves that are increasing in frequency and intensity. We evaluated leaf thermoregulation strategies in warm- (>40°C maximum summer temperature) and cool-adapted (<40°C maximum summer temperature) genotypes of the foundation tree species, Populus fremontii, using a common garden near the mid-elevational point of its distribution. We measured leaf temperatures and assessed three modes of leaf thermoregulation: leaf morphology, midday canopy stomatal conductance and stomatal sensitivity to vapour pressure deficit. Data were used to parameterize a leaf energy balance model to estimate contrasts in midday leaf temperature in warm- and cool-adapted genotypes. Warm-adapted genotypes had 39% smaller leaves and 38% higher midday stomatal conductance, reflecting a 3.8°C cooler mean leaf temperature than cool-adapted genotypes. Leaf temperatures modelled over the warmest months were on average 1.1°C cooler in warm- relative to cool-adapted genotypes. Results show that plants adapted to warm environments are predisposed to tightly regulate leaf temperatures during heat waves, potentially at an increased risk of hydraulic failure.


Assuntos
Populus , Árvores , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Populus/genética , Árvores/fisiologia , Pressão de Vapor , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA