Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Polymers (Basel) ; 16(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38932097

RESUMO

Hemicellulose is one of the most important natural polysaccharides in nature. Hemicellulose from different sources varies in chemical composition and structure, which in turn affects the modification effects and industrial applications. Grain and oil by-products (GOBPs) are important raw materials for hemicellulose. This article reviews the modification methods of hemicellulose in GOBPs. The effects of chemical and physical modification methods on the properties of GOBP hemicellulose biomaterials are evaluated. The potential applications of modified GOBP hemicellulose are discussed, including its use in film production, hydrogel formation, three-dimensional (3D) printing materials, and adsorbents for environmental remediation. The limitations and future recommendations are also proposed to provide theoretical foundations and technical support for the efficient utilization of these by-products.

2.
Food Res Int ; 188: 114466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823863

RESUMO

The effect of microfluidization treatment on the primary, secondary, and tertiary structure of soybean protein isolate (SPI) was investigated. The samples were treated with and without controlling the temperature and circulated in the system 1, 3, and 5 times at high pressure (137 MPa). Then, the treated samples were freeze-dried and reconstituted in water to check the impact of the microfluidization on two different states: powder and solution. Regarding the primary structure, the SDS-PAGE analysis under reducing conditions showed that the protein bands remained unchanged when exposed to microfluidization treatment. When the temperature was controlled for the samples in their powder state, a significant decrease in the quantities of ß-sheet and random coil and a slight reduction in α-helix content was noticed. The observed decrease in ß-sheet and the increase in ß-turns in treated samples indicated that microfluidization may lead to protein unfolding, opening the hydrophobic regions. Additionally, a lower amount of α-helix suggests a higher protein flexibility. After reconstitution in water, a significant difference was observed only in α-helix, ß-sheet and ß-turn. Related to the tertiary structure, microfluidization increases the surface hydrophobicity. Among all the conditions tested, the samples where the temperature is controlled seem the most suitable.


Assuntos
Manipulação de Alimentos , Interações Hidrofóbicas e Hidrofílicas , Pós , Proteínas de Soja , Proteínas de Soja/química , Manipulação de Alimentos/métodos , Estrutura Secundária de Proteína , Temperatura , Projetos Piloto , Eletroforese em Gel de Poliacrilamida , Glycine max/química , Soluções , Liofilização
3.
Foods ; 13(9)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38731773

RESUMO

Cold-pressed moringa, milk thistle, and jujube seed oils were investigated in terms of their characteristic profiles, thermal properties, and oxidative stability. The findings proved that the extracted oils were characterized by high nutritional values, which encourages their use in various fields. Results showed significant differences between the obtained oils. Overall, jujube seed oil exhibited the best quality parameters, with acidity equal to 0.762 versus 1% for the moringa and milk thistle seed oils. Milk thistle seed oil showed absorbance in the UV-C (100-290 nm), UV-B (290-320 nm), and UV-A (320-400 nm) ranges, while the moringa and jujube seed oils showed absorbance only in the UV-B and UV-A ranges. Concerning bioactive compounds, jujube seed oil presented the highest content of polyphenols, which promoted a good scavenging capacity (90% at 10 µg/mL) compared to the moringa and milk thistle seed oils. Assessing the thermal properties of the obtained oils showed the presence of four groups of triglycerides in the moringa and milk thistle seed oils, and two groups of triglycerides in the jujube seed oil. The thermograms were constant at temperatures above 10 °C for milk thistle seed oil, 15 °C for jujube seed oil, and 30 °C for moringa seed oil, which corresponded to complete liquefaction of the oils. The extinction coefficients K232 and K270, monitored during storage for 60 days at 60 °C, proved that jujube seed oil had the highest polyphenols content and was the most stable against thermal oxidation.

4.
Food Chem ; 447: 138930, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38503065

RESUMO

Advanced glycation end products (AGEs) and heterocyclic amines (HAs) are main harmful Maillard reaction products of meat products. Simultaneous quantification of both with high sensitivity, selectivity and accuracy remains a major challenge due to inconsistencies in their pre-treatment and instrumental methods and the different polarity of AGEs and HAs. We developed a method for the simultaneous determination of AGEs and HAs in roast/grilled meat by ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS) using dynamic multiple reaction monitoring (D-MRM). The instrument parameters and pre-treatment method were optimized to achieve reasonably good separation and high response for the 11 target analytes within 8 min. From 10 to 200 ng/mL, the limits of detection (LODs) and limits of quantitation (LOQs) ranged from 0.3 to 5.5 µg/L and 0.9 to 6.3 µg/L, respectively, and the correlation coefficient (R2) was >0.99. It was acceptable to recoveries, standard deviations (RSDs), and matrix effects. Six types of roast/grilled meat samples were then tested using the developed method.


Assuntos
Espectrometria de Massa com Cromatografia Líquida , Espectrometria de Massas em Tandem , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida , Carne/análise , Aminas/química , Produtos Finais de Glicação Avançada/análise , Cromatografia Líquida de Alta Pressão/métodos
5.
Food Chem X ; 21: 101125, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38292674

RESUMO

The objective of this work was to investigate the influence of phosphoglycerate kinase-1 (PGK1) and pyruvate kinase-M2 (PKM2) activity on glycolysis, myofibrillar proteins, calpain system, and apoptosis pathways of postmortem muscle. The activity of PGK1 and PKM2 was regulated by their inhibitors and activators to construct the postmortem glycolysis vitro model and then incubated at 4 °C for 24 h. The results showed that compared to PGK1 and PKM2 inhibitors groups, the addition of PGK1 and PKM2 activators could accelerate glycogen consumption, ATP and lactate production, while declining pH value. Moreover, the addition of PGK1 and PKM2 activators could increase desmin degradation, µ-calpain activity, and caspase-3 abundance. Interestingly, troponin-T degradation was significantly increased both in PKM2 inhibitor and activator groups. It was suggested that PGK1 and PKM2 might be used as robust indicators to regulate meat quality by affecting the glycolysis, myofibrillar proteins, µ-calpain and apoptosis pathways in postmortem muscle.

6.
J Hazard Mater ; 463: 132898, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37939561

RESUMO

A novel ratiometric fluorescent nanoprobe (Rh6G@UIO-66-NH2) was fabricated for efficient nitrite (NO2-) detection in the present study. When NO2- was introduced, it interacted with the amino groups on the surface of Rh6G@UIO-66-NH2, forming diazonium salts that led to the quenching of blue fluorescence. With this strategy, a good linear relationship between NO2- concentration and the fluorescent intensity ratio of the nanoprobe in the range of 1-100 µM was established, with a detection limit of 0.021 µM. This dual-readout nanosensor was applied to analyze the concentration of NO2- in real meat samples, achieving satisfactory recovery rates of 94.72-104.52%, highlighting the practical potential of this method. Furthermore, a portable Gel/Rh6G@UIO-66-NH2 hydrogel test kit was constructed for on-spot dual-mode detection of NO2-. This kit allows for convenient colorimetric analysis and fluorometric detection when used in conjunction with a smartphone. All the photos taken with the portable kit was converted into digital information using ImageJ software. It provides colorimetric and fluorescent visual detection of NO2- over a range of 0.1-1.5 mM, achieving a direct quantitative tool for NO2- identification. This methodology presents a promising strategy for NO2- detection and expands the application prospects for on-spot monitoring of food safety assessment.


Assuntos
Produtos da Carne , Produtos da Carne/análise , Nitritos/análise , Hidrogéis , Dióxido de Nitrogênio , Limite de Detecção , Corantes Fluorescentes
7.
Crit Rev Food Sci Nutr ; : 1-15, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37667834

RESUMO

Supercooling can preserve food in its original fresh state below its ice point temperature without freezing. However, the supercooled state is unstable in thermodynamics, state breakdown can occur at any moment, resulting in irregular and larger ice crystals formation, leading to food tissue damage, and loss of quality and nutrients. While the effectiveness of supercooling preservation has been verified in the lab and pilot scale tests, the stability of the supercooled state of food remains an open question, posing a limitation for larger industrial-scale application of supercooling preservation. Based on this background, this review presents the instability mechanisms of supercooling preservation and summarizes the factors such as food properties (e.g., material size, food components, specific surface area, and surface roughness) and preservation circumstances (e.g., cooling rate, temperature variation, and mechanical disturbance) that influence the stability of the supercooled state of food. The review also discusses novel techniques for enhancing the supercooling capacity and their limitations (e.g., precise temperature control and magnetic field). Further studies are necessary to comprehensively evaluate the effects of influence factors and supercooling technologies on supercooling, realizing the true sense of 'no-crystal' food products under subzero temperature preservation conditions in commercial applications.


Supercooling can maximize the potential of low temperature in food preservation.Supercooled state of food is unstable, with many factors affecting its stability.The quality of foodstuffs with supercooled failure is unacceptable.Instability of supercooling limits its large application in food industry.Novel technologies are developed to enhance the state stability of food supercooling.

8.
Food Chem ; 427: 136739, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37392625

RESUMO

This work investigated the ability of 8 potential biomarkers (phosphoglycerate kinase-1 (PGK1), pyruvate kinase-M2 (PKM2), phosphoglucomutase-1 (PGM1), ß-enolase (ENO3, myosin-binding protein-C (MYBPC1), myosin regulatory light chain-2 (MYLPF), troponin C-1 (TNNC1) and troponin I-1 (TNNI1)) to characterize meat quality by analyzing their relative abundance and enzymatic activity. Two different meat quality groups (Quadriceps femoris (QF) and Longissimus thoracis (LT) muscles) were selected at 24 h postmortem from 100 lamb carcasses. The relative abundance of PKM2, PGK1, PGM1, ENO3, MYBPC1, MYLPF, and TNNI1 was significantly different between LT and QF muscle groups (P < 0.01). Moreover, PKM, PGK, PGM, and ENO activity in LT muscle group was significantly lower than that in QF muscle (P < 0.05). Suggesting that PKM2, PGK1, PGM1, ENO3, MYBPC1, MYLPF, and TNNI1 can be used as robust biomarkers of lamb meat quality, providing the reference for understanding the molecular mechanism of postmortem meat quality formation in future.


Assuntos
Músculo Esquelético , Carne Vermelha , Animais , Ovinos , Músculo Esquelético/química , Proteínas/metabolismo , Carne Vermelha/análise , Carne/análise , Biomarcadores/análise
9.
Heliyon ; 9(2): e13604, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36879748

RESUMO

Hydroxypropyl cellulose (HPC) is a water-soluble polymer with many applications in food, pharmaceutical, medical, or paints industries. Past studies have reported that differences in functionality can occur between products of similar pharmaceutical grades. Understanding the origin of these differences is a major challenge for the industry. In this work, the structure and physico-chemical properties of several HPC samples of the same commercial grade were studied. Structural analysis by NMR and enzymatic hydrolysis were performed to study molar substitution and distribution of substituents along the polymer chain respectively. Water-polymer interactions, surface properties as well as rheological and thermal behavior were characterized to tentatively correlate them with the structure, and gain new insights into the structure-function relationship of this polymer. The differences in structure revealed between the samples affect their properties. The unexpected behavior of one sample was attributed to a more heterogeneous substitution pattern, with the coexistence of highly and weakly substituted regions along the same polymer chain. The more block-like distribution of substituents has a great effect on the clouding behavior and surface tension reduction ability of the polymer.

10.
Meat Sci ; 199: 109126, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36736126

RESUMO

The aim of this study was to identify the potential indicators of lamb meat quality by TMT and PRM-based proteomics combined with bioinformatic analysis. Lamb muscles were divided into three different meat quality groups (high, middle and low) according to tenderness (shear force, MFI value), colour (a* value, R630/580), and water-holding capacity (cooking loss, drip loss) at 24 h postmortem. The results showed that the abundance of phosphoglycerate kinase 1 (PGK1), ß-enolase (ENO3), myosin-binding protein C (MYBPC1) and myosin regulatory light chain 2 (MYLPF) was significantly different in the three groups and could be used as potential indicators to characterize meat quality. Moreover, the postmortem processes of glycolysis, oxidative phosphorylation, and muscle contraction remarkably changed in different groups, and were the key biological pathways influencing meat quality. Overall, this study depicted the proteomic landscape of meat that furthers our understanding of the molecular mechanism of meat quality and provides a reference for developing non-destructive detection technology for meat quality.


Assuntos
Proteômica , Carne Vermelha , Ovinos , Animais , Proteômica/métodos , Músculos/metabolismo , Contração Muscular , Carne Vermelha/análise , Carne/análise , Músculo Esquelético/química
11.
Food Chem ; 408: 135196, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36535178

RESUMO

Quinoa protein hydrolysate has been previously reported to exert anti-cancer effects in cultured colon cancer cells. Here, we investigated the effect of quinoa protein and its hydrolysate on an azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mouse model of colorectal cancer (CRC) and examined its underlying mechanism using gut microbiota analysis and short chain fatty acids (SCFAs) production analysis. Our results showed that quinoa protein or its hydrolysate mitigated the clinical symptoms of CRC and increased SCFAs contents in colon tissues. Moreover, administration of quinoa protein or its hydrolysate partially alleviated gut microbiota dysbiosis in CRC mice by decreasing the abundance of pathogenic bacteria and increasing the abundance of probiotics. Additionally, PICRUSt analysis revealed that the functional profile of gut microbiota in the quinoa protein treated groups was more similar to that of the control group. These findings indicated that the modulation of gut microbiota by quinoa protein diet intervention may ameliorate AOM/DSS-induced CRC.


Assuntos
Chenopodium quinoa , Colite , Neoplasias Colorretais , Microbioma Gastrointestinal , Probióticos , Animais , Camundongos , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Azoximetano/efeitos adversos , Sulfato de Dextrana , Peptídeos/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Colite/induzido quimicamente
12.
Food Sci Nutr ; 10(11): 3855-3864, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36348785

RESUMO

In the present research study, Cynara cardunculus (wild cardoon) flowers were blended and extracted using different types of buffers (phosphate buffer; citrate buffer and distilled water) for different maceration times. The most reliable, quick and efficient buffer was found to be phosphate (pH = 6.5) with a 6-h maceration time, which was used throughout this study. C. cardunculus extract (CE) was found to have high clotting and proteolytic activities. The extracted enzyme was found to be very stable against a wide range of pH values as well as of temperature. The formation of milk gels prepared in the presence of CE with different types of milk was evaluated using dynamic rheology and Turbiscan. The evolution of both elastic (G') and viscous (G″) moduli was monitored with time. The values of the whole milk enriched with milk powder gels were higher. Coagulum stability was evaluated using Turbiscan. The textural properties and the curd-firming rate of coagulum were also determined. In conclusion, the prepared CE could be an efficient milk-clotting agent in the production of dairy products.

13.
Food Res Int ; 161: 111757, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36192927

RESUMO

To get insight into freeze-induced damage in meat, researchers evaluated the formation of ice crystals in the initial freezing stage and the protein profile and bioinformatics information in thawed exudates. Two treatments were used with high freezing temperatures of -12 °C and low freezing temperatures of -80 °C. Lower-temperature (-80 °C) freezing benefits small, evenly distributed intracellular ice crystals and causes less damage to muscle fibers. 82 proteins were identified as differentially abundant proteins (DAPs) based on the data-independent acquisition (DIA) techniques. Most of these proteins were binding proteins, oxidoreductases, transferases, and protease inhibitors that were involved in oxidative phosphorylation, glycolysis, the tricarboxylic acid cycle (TCA), amino acid metabolism, and other pathways. Seven proteins were screened as potential markers of exudates. Besides the mechanical damage caused by ice crystal formation, we postulated that ATP decomposition causes muscle contraction during freezing and thawing. Furthermore, the effect of CAST on calpain activity reduces proteolytic capacity, which is also one of the reasons for decreased muscle quality. These results could add to what is already known about how frozen meat deteriorates, which could help control the quality of frozen meat and develop new technologies.


Assuntos
Gelo , Proteômica , Trifosfato de Adenosina , Aminoácidos , Calpaína , Exsudatos e Transudatos/química , Congelamento , Gelo/análise , Oxirredutases , Inibidores de Proteases , Transferases
14.
J Food Biochem ; 46(10): e14330, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35848392

RESUMO

As freeze/thaw procedure leads to inevitable drip loss, elucidation of mechanism on dynamic changes in water holding capacity (WHC) of muscle is urgently needed. In this study, the proteomic profile by DIA-based strategy, muscle microstructure, water mobility, and WHC indices of bovine longissimus dorsi muscles were investigated under different freezing conditions as well as the correlations among them. Results indicated that slow freezing (SF) sample exhibited significantly higher water mobility, thaw loss, total loss, and shear force value than the samples subjected to fast freezing (FF) and non-frozen control (CON). According to the protein profile, we have identified 272 differential abundance proteins (DAPs), in which more significant proteome changes were found in SF/CON samples as compared with FF/CON. Among the 132 DAPs in FF/SF comparison, correlation analysis revealed that MYL3, DES, SYNE2, EXR, RPL35A, RPS6, and Hsp40 were closely correlated with T23 , thaw loss, and total loss. Accordingly, we considered those seven proteins as potential biomarkers related to WHC of frozen muscle. Our study should give a further understanding on mechanisms behind the various WHC of muscle when subjected to different freezing conditions. PRACTICAL APPLICATIONS: Freezing plays a key role in the preservation method for meat and meat products. However, the drip loss during freezing and subsequent thawing procedure causes considerable economic and nutritional losses. To minimize the losses, elucidation of mechanism on the mechanism of thaw loss formation is urgently needed. DIA-based proteomics is a novel, robust method that provides further understanding on the mechanisms behind the dynamic changes in water holding capacity of muscle. The screened protein biomarkers in frozen muscle would play key roles in the development of WHC, especially for the thaw loss formation. Through this perspective, we can explain the origin of thaw loss and the variation under different freezing conditions, which should provide the meat industries with theoretical basis for reducing losses.


Assuntos
Proteômica , Água , Animais , Bovinos , Congelamento , Músculos/química , Proteoma
15.
Food Chem ; 396: 133628, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35843005

RESUMO

The effect elicited by degree of starch gelatinization on the rheological properties of starch-gluten model dough was examined. Gelatinization temperature, water retention capacity, linear viscoelastic region, and maximum creep compliance of potato starch-gluten composites increased, while enthalpy and frequency dependence decreased with increasing degree of starch gelatinization. More membrane-like structures and larger holes were observed in potato starch-gluten model dough; the amount of gluten ß-sheet increased, while the amount of random coil and ß-turn decreased as degree of gelatinization increased. The starch gelling and starch-gluten interactions played major roles in imparting the desired functionality of the model dough. A possible interaction model between partially gelatinized potato starch and gluten was proposed. Partially gelatinized potato starch with moderate degree of gelatinization could more closely interact with gluten, better improve the texture and processing adaptability of model dough than native and highly gelatinized starch, thus has promising application potential in food industry.


Assuntos
Glutens , Solanum tuberosum , Farinha/análise , Indústria de Processamento de Alimentos , Glutens/química , Reologia , Amido/química
16.
Anim Nutr ; 10: 99-110, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35647322

RESUMO

Clostridium autoethanogenum protein (CAP) is a new single-cell protein source originating from inactivated bacteria. An in vitro digestion experiment and an 8-wk growth experiment were conducted to evaluate the molecular weight distribution of the CAP hydrolysate, and the effects of dietary CAP levels on the growth performance, plasma parameters, hepatic and intestinal health, and the diversity of gut-adherent microbiota of largemouth bass (Micropterus salmoides). The fish (initial body weight of 47.99 ± 0.01 g) were fed diets where CAP gradually replaced 0% (CAP0), 12.5% (CAP12.5), 25% (CAP25), 37.5% (CAP37.5) and 50% (CAP50) of low-temperature steam dried anchovy fish meal (LTFM) in the diet. Results showed that the content of peptides below 1,000 Da in the CAP hydrolysate (0.56 mg/mL) was higher than that of the LTFM hydrolysate (0.48 mg/mL). Dietary CAP inclusion had no negative effect on growth performance, while whole-body lipid content significantly reduced in the CAP25 and CAP50 groups (P < 0.05). The plasma alanine aminotransferase activities and triglyceride concentrations in the CAP inclusion groups were significantly lower than those in the CAP0 group (P < 0.05). The plasma aspartate aminotransferase activity was significantly reduced in the CAP37.5 group (P < 0.05). The richness and diversity of the gut-adhesive microbiota and the proportion of Clostridium sensu stricto 12 in the CAP50 group were significantly higher than those in the CAP0 group (P < 0.05). Dietary CAP inclusion inhibited inflammatory responses by down-regulating the mRNA levels of interleukin 1ß (IL1ß), IL10 and transforming growth factor ß1 (P < 0.05) in the liver. The mRNA levels of acetyl-CoA carboxylase 1 were significantly down-regulated in the CAP12.5, CAP25 and CAP37.5 groups (P < 0.05), while that of fatty acid synthase was significantly down-regulated in the CAP50 group (P < 0.05). These results demonstrate that dietary CAP inclusion could improve the hepatic and intestinal health of largemouth bass, and can be helpful to further develop CAP as a functional feed ingredient.

17.
Food Funct ; 13(13): 7075-7087, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35695741

RESUMO

This study aimed at clarifying the mechanism by which sweet potato leaf polyphenols (SPLPs) ameliorate ultraviolet (UV) radiation damage, using the BALB/c hairless female mouse model. The moisture and hydroxyproline (HYP) contents of the model mouse skin and the thickness of the epidermis and dermis were determined by staining and histological examination. Anti-oxidative enzyme activities, malondialdehyde (MDA) content, and protein carbonyl content in skin tissue and serum were investigated. Expression of inflammatory markers and mitogen-activated protein kinase signaling pathways were evaluated. Topical caffeic acid at 30 mg kg-1 most strongly inhibited the decrease in skin moisture, HYP content, and the thickening of the epidermis. Topical SPLP at 100 mg kg-1 most significantly inhibited the dermal thickening, increased the activities of the superoxide dismutase, catalase as well as glutathione peroxidase, and decreased the content of serum MDA and protein carbonyls markedly. Furthermore, the topical SPLP suppressed the UV-induced rise in the inflammatory markers MMP-1, TNF-α, and NF-κB, and alleviated phosphorylation levels of the stress-signaling proteins JNK and p38. Thus, topical SPLP provided the best overall protection for mouse skin from UV-induced damage.


Assuntos
Ipomoea batatas , Polifenóis , Animais , Ácidos Cafeicos , Feminino , Camundongos , Camundongos Pelados , Camundongos Endogâmicos BALB C , Camundongos Nus , Folhas de Planta , Polifenóis/metabolismo , Polifenóis/farmacologia , Carbonilação Proteica , Pele , Raios Ultravioleta/efeitos adversos
18.
Food Chem ; 393: 133398, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35689925

RESUMO

This study aimed to facilitate the understanding on the origin of thawing drip under different freezing rate. Eventually we observed significantly greater thaw loss produced by slow freezing (8.58%) as compared to fast freezing (6.41%) after 24 h of thawing. Back to the freezing, ice crystallization induced decline in pH and the cold denaturation of myofibrillar protein. However, independent of freezing rate, we noticed protein renaturation with pH restoring during thawing, evidenced by the decreasing surface hydrophobicity, increasing solubility and thermal stability, and gradually stabilized secondary structure. Meanwhile, the water-holding of myofibrils increased with thawing process along with the rising water mobility. Under fast freezing, the results indicated less extensive protein cold denaturation and lower water mobility during thawing. Besides, we proposed that the microenvironment of lower ionic strength in fast freezing should benefit the protein renaturation and water re-absorption, ultimately contributed to lower thaw loss.


Assuntos
Miofibrilas , Água , Congelamento , Miofibrilas/química , Desnaturação Proteica , Renaturação Proteica , Água/química
19.
Foods ; 11(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35741989

RESUMO

The influence of freezing on the protein profile and quality traits in bovine Longissimus thoracic (LT) muscle was investigated by the data-independent acquisition (DIA) technique. Compared to fresh meat, a total of 262 proteins were identified as differential abundance proteins (DAPs) in four frozen groups (−12 °C, −18 °C, −38 °C, and −80 °C). According to the bioinformatics analysis, most of the DAPs in the significant Go terms and the KEGG pathway were structure proteins and enzymes. Proteome changes in the frozen bovine muscle at −12 °C and −18 °C were more significant than those at −38 °C and −80 °C. The result was consistent with the deterioration trend of the meat quality. The correlation analysis revealed that 17 proteins were correlated closely with the color, shear force, thawing loss, and cooking loss of the frozen meat, which could be used as putative biomarkers for frozen meat quality. MYO18A and ME3 are newly discovered proteins that are associated with frozen beef quality. In addition, CTTN and SERPINB6 were identified in frozen groups, which exhibited a significant inverse correlation with thawing loss (p < 0.01). These findings reveal the quality changes induced by freezing at the protein molecular level and provide new insights into the control of quality deterioration.

20.
Foods ; 11(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35626963

RESUMO

This study aims to evaluate the impact of incorporating pear, date, and apple by-products on pasta properties. Pasta properties including cooking quality, texture, color, rheology, thermal gelling, and microstructural characteristics were evaluated. Common wheat flour was substituted by 0, 2.5, 5, 7, and 10 g/100 g of by-products. To choose the best-suited substitute of flour for the preparation of pasta, the sensorial properties of pasta were investigated. Interrelationships between all the physicochemical parameters were investigated using multiple factor analysis. We also studied the impact of storage (7, 15, and 30 days) on the physicochemical proprieties of pasta. The results revealed that the chemical composition of pasta elaborated with by-products was characterized by higher energy (~386 Kcal) and fiber content (~13%) than the control pasta. Generally, materials added to the durum wheat pasta reduce optimum cooking time, adhesiveness, and extensibility, and enhance the swelling index, cooking loss, cooking water absorption, water activity, firmness, and tenacity of pasta. Cooked pasta samples were significantly (p < 0.05) darker (L*) and greener (-a*) than the control pasta. Increasing the rate of by-products from 2.5% to 10% principally altered the texture and structure of pasta. Scanning electron microscopy analysis showed that the inclusion of by-products into pasta leads to a disruption of the protein matrix. A practical formulation (2.5% of by-products) can be selected, since a significant difference was detected between overall acceptability scores. Grouping the variables in the principal component analysis plot showed that pasta samples can be divided into three groups. Each group was correlated by a specific variable. A significant modification of the physical parameters of pasta was observed after 30 days of storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA