Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Wildl Dis ; 59(3): 381-397, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270186

RESUMO

White-nose syndrome (WNS) has notably affected the abundance of Myotis lucifugus (little brown myotis) in North America. Thus far, substantial mortality has been restricted to the eastern part of the continent where the cause of WNS, the invasive fungus Pseudogymnoascus destructans, has infected bats since 2006. To date, the state of Washington is the only area in the Western US or Canada (the Rocky Mountains and further west in North America) with confirmed cases of WNS in bats, and there the disease has spread more slowly than it did in Eastern North America. Here, we review differences between M. lucifugus in western and eastern parts of the continent that may affect transmission, spread, and severity of WNS in the West and highlight important gaps in knowledge. We explore the hypothesis that western M. lucifugus may respond differently to WNS on the basis of different hibernation strategies, habitat use, and greater genetic structure. To document the effect of WNS on M. lucifugus in the West most effectively, we recommend focusing on maternity roosts for strategic disease surveillance and monitoring abundance. We further recommend continuing the challenging work of identifying hibernation and swarming sites to better understand the microclimates, microbial communities, and role in disease transmission of these sites, as well as the ecology and hibernation physiology of bats in noncavernous hibernacula.


Assuntos
Quirópteros , Hibernação , Micoses , Gravidez , Animais , Feminino , Micoses/epidemiologia , Micoses/veterinária , Micoses/microbiologia , Quirópteros/microbiologia , Ecossistema , América do Norte/epidemiologia
2.
J Mammal ; 102(4): 1110-1127, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34393669

RESUMO

Recent studies have revealed that western populations of little brown bats (Myotis lucifugus) in North America exhibit different hibernation behavior than their eastern counterparts. Understanding these differences is essential for assessing the risk white-nose syndrome (WNS) poses to western bat populations. We used acoustic monitoring and radiotelemetry to study the overwintering behavior of little brown bats near Juneau, Alaska during 2011-2014. Our objectives were to identify the structures they use for hibernation, measure the microclimates within those structures, and determine the timing of immergence and emergence and the length of the hibernation season. We radiotracked 10 little brown bats to underground hibernacula dispersed along two ridge systems. All hibernacula were ≤ 24.2 km from where the bats were captured. Eight bats hibernated in the "Milieu Souterrain Superficiel" (MSS), a network of air-filled underground voids between the rock fragments found in scree (talus) deposits. Two bats hibernated in holes in the soil beneath the root system of a tree or stump (rootball). At least two hibernacula in the MSS were reused in subsequent years. Average MSS and rootball temperatures were warmer and more stable than ambient temperature and were well below the optimal growth range of the fungus that causes WNS. Temperatures in the MSS dropped below freezing, but MSS temperatures increased with depth, indicating bats could avoid subfreezing temperatures by moving deeper into the MSS. Relative humidity (RH) approached 100% in the MSS and under rootballs and was more stable than ambient RH, which also was high, but dropped substantially during periods of extreme cold. Acoustic monitoring revealed that bats hibernated by late October and began emerging by the second week of April; estimates of minimum length of the hibernation season ranged from 156 to 190 days. The cold temperatures, dispersed nature of the hibernacula, and close proximity of hibernacula to summering areas may slow the spread and reduce the impacts of WNS on local populations of little brown bats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA