Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am Nat ; 203(6): 681-694, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781530

RESUMO

AbstractTrade-offs are central to life history theory and play a role in driving life history diversity. They arise from a finite amount of resources that need to be allocated among different functions by an organism. Yet covariation of demographic rates among individuals frequently do not reflect allocation trade-offs because of variation in resource acquisition. The covariation of traits among individuals can thus vary with the environment and often increases in benign environments. Surprisingly, little is known about how such context-dependent expression of trade-offs among individuals affect population dynamics across species with different life histories. To study their influence on population stability, we develop an individual-based simulation where covariation in demographic rates varies with the environment. We use it to simulate population dynamics for various life histories across the slow-fast pace-of-life continuum. We found that the population dynamics of slower life histories are relatively more sensitive to changes in covariation, regardless of the trade-off considered. Additionally, we found that the impact on population stability depends on which trade-off is considered, with opposite effects of intraindividual and intergenerational trade-offs. Last, the expression of different trade-offs can feed back to influence generation time through selection acting on individual heterogeneity within cohorts, ultimately affecting population dynamics.


Assuntos
Características de História de Vida , Dinâmica Populacional , Animais , Modelos Biológicos , Meio Ambiente , Simulação por Computador
2.
Evolution ; 78(7): 1317-1324, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38650425

RESUMO

Cooperative breeding occurs when individuals contribute parental care to offspring that are not their own. Numerous intra- and interspecific studies have aimed to explain the evolution of this behavior. Recent comparative work suggests that family living (i.e., when offspring remain with their parents beyond independence) is a critical stepping stone in the evolution of cooperative breeding. Thus, it is key to understand the factors that facilitate the evolution of family living. Within-species studies suggest that protection from predators is a critical function of group living, through both passive benefits such as dilution effects and active benefits such as prosocial antipredator behaviors in family groups. However, the association between predation risk and the formation and prevalence of family groups and cooperative breeding remains untested globally. Here, we use phylogenetic comparative analyses including 2,984 bird species to show that family living and cooperative breeding are associated with increased occurrence of avian predators. These cross-species findings lend support to previous suggestions based on intraspecific studies that social benefits of family living, such as protection against predation, could favor the evolution of delayed dispersal and cooperative breeding.


Assuntos
Aves , Comportamento Cooperativo , Comportamento Predatório , Animais , Aves/fisiologia , Aves/genética , Filogenia , Comportamento de Nidação , Evolução Biológica
3.
Behav Ecol ; 35(2): arae010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38486920

RESUMO

Predation risk can influence behavior, reproductive investment, and, ultimately, individuals' fitness. In high-risk environments, females often reduce allocation to reproduction, which can affect offspring phenotype and breeding success. In cooperative breeders, helpers contribute to feed the offspring, and groups often live and forage together. Helpers can, therefore, improve reproductive success, but also influence breeders' condition, stress levels and predation risk. Yet, whether helper presence can buffer the effects of predation risk on maternal reproductive allocation remains unstudied. Here, we used the cooperatively breeding sociable weaver Philetairus socius to test the interactive effects of predation risk and breeding group size on maternal allocation to clutch size, egg mass, yolk mass, and yolk corticosterone. We increased perceived predation risk before egg laying using playbacks of the adults' main predator, gabar goshawk (Micronisus gabar). We also tested the interactive effects of group size and prenatal predator playbacks on offspring hatching and fledging probability. Predator-exposed females laid eggs with 4% lighter yolks, but predator-calls' exposure did not clearly affect clutch size, egg mass, or egg corticosterone levels. Playback-treatment effects on yolk mass were independent of group size, suggesting that helpers' presence did not mitigate predation risk effects on maternal allocation. Although predator-induced reductions in yolk mass may decrease nutrient availability to offspring, potentially affecting their survival, playback-treatment effects on hatching and fledging success were not evident. The interplay between helper presence and predator effects on maternal reproductive investment is still an overlooked area of life history and physiological evolutionary trade-offs that requires further studies.

4.
Curr Biol ; 32(23): 5153-5158.e5, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36288731

RESUMO

Oscine birds preferentially respond to certain sounds over others from an early age, which focuses subsequent learning onto sexually relevant songs.1,2,3 Songs vary both across species and, due to cultural evolution, among populations of the same species. As a result, early song responses are expected to be shaped by selection both to avoid the fitness costs of cross-species learning4 and to promote learning of population-typical songs.5 These sources of selection are not mutually exclusive but can result in distinct geographic patterns of song responses in juvenile birds: if the risks of interspecific mating are the main driver of early song discrimination, then discrimination should be strongest where closely related species co-occur.4 In contrast, if early discrimination primarily facilitates learning local songs, then it should be tuned to songs typical of the local dialect.5,6,7 Here, we experimentally assess the drivers of song discrimination in nestling pied flycatchers (Ficedula hypoleuca). We first demonstrate that early discrimination against the songs of the closely related collared flycatcher (F. albicollis) is not strongly affected by co-occurrence. Second, across six European populations, we show that nestlings' early song responses are tuned to their local song dialect and that responses to the songs of collared flycatchers are similarly weak as to those of other conspecific dialects. Taken together, these findings provide clear experimental support for the hypothesis that cultural evolution, in conjunction with associated learning predispositions, drives the emergence of pre-mating reproductive barriers.


Assuntos
Evolução Cultural
5.
Biol Lett ; 16(4): 20200002, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32315593

RESUMO

Insular ecosystems share analogous ecological conditions, leading to patterns of convergent evolution that are collectively termed as the 'island syndrome'. In birds, part of this syndrome is a tendency for a duller plumage, possibly as a result of relaxed sexual selection. Despite this global pattern, some insular species display a more colourful plumage than their mainland relatives, but why this occurs has remained unexplained. Here, we examine the hypothesis that these cases of increased plumage coloration on islands could arise through a relaxation of predation pressure. We used comparative analyses to investigate whether average insular richness of raptors of suitable mass influences the plumage colourfulness and brightness across 110 pairs of insular endemic species and their closest mainland relatives. As predicted, we find a likely negative relationship between insular coloration and insular predation while controlling for mainland predation and coloration, suggesting that species were more likely to become more colourful as the number of insular predators decreased. By contrast, plumage brightness was not influenced by predation pressure. Relaxation from predation, together with drift, might thus be a key mechanism of species phenotypic responses to insularity.


Assuntos
Evolução Biológica , Ecossistema , Animais , Aves , Ilhas , Pigmentação , Comportamento Predatório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA