Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 233: 223-239, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26143156

RESUMO

Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in egg yolk solutions. The results reveal how the interfacial rigidity, as well as the bubble/wall and drop/wall adhesion forces, can be quantified and controlled in relation to optimizing the properties of foams and emulsions.


Assuntos
Técnicas de Química Analítica/instrumentação , Gema de Ovo/química , Emulsões/análise , Proteínas/química , Substâncias Viscoelásticas/análise , Adsorção , Anisotropia , Técnicas de Química Analítica/métodos , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Pressão , Tensão Superficial , Viscosidade
2.
J Colloid Interface Sci ; 440: 168-78, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25460703

RESUMO

The stresses acting in interfacial adsorption layers with surface shear elasticity are, in general, anisotropic and non-uniform. If a pendant drop or buoyant bubble is covered with such elastic layer, the components of surface tension acting along the "meridians" and "parallels", σ(s) and σ(φ), can be different and, then, the conventional drop shape analysis (DSA) is inapplicable. Here, a method for determining σ(s) and σ(φ) is developed for axisymmetric menisci. This method, called 'capillary meniscus dynamometry' (CMD), is based on processing data for the digitized drop/bubble profile and capillary pressure. The principle of the CMD procedure for data processing is essentially different from that of DSA. Applying the tangential and normal surface stress balance equations, σ(s) and σ(φ) are determined in each interfacial point without using any rheological model. The computational procedure is fast and could be used in real time, during a given process. The method is applied to determine σ(s) and σ(φ) for bubbles and drops formed on the tip of a capillary immersed in solutions of the protein HFBII hydrophobin. Upon a surface compression, meridional wrinkles appear on the bubble surface below the bubble "equator", where the azimuthal tension σ(φ) takes negative values. The CMD method allows one to determine the local tensions acting in anisotropic interfacial layers (films, membranes), like those formed from proteins, polymers, asphaltenes and phospholipids. The CMD is applicable also to fluid interfaces (e.g. surfactant solutions), for which it gives the same surface tension as the conventional methods.


Assuntos
Tensão Superficial , Teste de Materiais
3.
J Colloid Interface Sci ; 376(1): 296-306, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22480400

RESUMO

The pendant-drop method (with drop-shape analysis) and Langmuir trough are applied to investigate the characteristic relaxation times and elasticity of interfacial layers from the protein HFBII hydrophobin. Such layers undergo a transition from fluid to elastic solid films. The transition is detected as an increase in the error of the fit of the pendant-drop profile by means of the Laplace equation of capillarity. The relaxation of surface tension after interfacial expansion follows an exponential-decay law, which indicates adsorption kinetics under barrier control. The experimental data for the relaxation time suggest that the adsorption rate is determined by the balance of two opposing factors: (i) the barrier to detachment of protein molecules from bulk aggregates and (ii) the attraction of the detached molecules by the adsorption layer due to the hydrophobic surface force. The hydrophobic attraction can explain why a greater surface coverage leads to a faster adsorption. The relaxation of surface tension after interfacial compression follows a different, square-root law. Such behavior can be attributed to surface diffusion of adsorbed protein molecules that are condensing at the periphery of interfacial protein aggregates. The surface dilatational elasticity, E, is determined in experiments on quick expansion or compression of the interfacial protein layers. At lower surface pressures (<11 mN/m) the experiments on expansion, compression and oscillations give close values of E that are increasing with the rise of surface pressure. At higher surface pressures, E exhibits the opposite tendency and the data are scattered. The latter behavior can be explained with a two-dimensional condensation of adsorbed protein molecules at the higher surface pressures. The results could be important for the understanding and control of dynamic processes in foams and emulsions stabilized by hydrophobins, as well as for the modification of solid surfaces by adsorption of such proteins.


Assuntos
Proteínas Fúngicas/química , Trichoderma/química , Elasticidade , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Tensão Superficial
4.
Langmuir ; 28(9): 4168-77, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22320311

RESUMO

The surface shear rheology of hydrophobin HFBII adsorption layers is studied in angle-ramp/relaxation regime by means of a rotational rheometer. The behavior of the system is investigated at different shear rates and concentrations of added ß-casein. In angle-ramp regime, the experimental data comply with the Maxwell model of viscoelastic behavior. From the fits of the rheological curves with this model, the surface shear elasticity and viscosity, E(sh) and η(sh), are determined at various fixed shear rates. The dependence of η(sh) on the rate of strain obeys the Herschel-Bulkley law. The data indicate an increasing fluidization (softening) of the layers with the rise of the shear rate. The addition of ß-casein leads to more rigid adsorption layers, which exhibit a tendency of faster fluidization at increasing shear rates. In relaxation regime, the system obeys a modified Andrade's (cubic root) law, with two characteristic relaxation times. The fact that the data comply with the Maxwell model in angle-ramp regime, but follow the modified Andrade's low in relaxation regime, can be explained by the different processes occurring in the viscoelastic protein adsorption layer in these two regimes: breakage and restoration of intermolecular bonds at angle-ramp vs solidification of the layer at relaxation.


Assuntos
Caseínas/química , Proteínas/química , Reologia/métodos , Adsorção , Elasticidade , Modelos Teóricos , Viscosidade
5.
Langmuir ; 27(6): 2382-92, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21319779

RESUMO

The HFBII hydrophobin is an amphiphilic protein that can irreversibly adsorb at the air/water interface. The formed protein monolayers can reach a state of two-dimensional elastic solid that exhibits a high mechanical strength as compared to adsorption layers of typical amphiphilic proteins. Bubbles formed in HFBII solutions preserve the nonspherical shape they had at the moment of solidification of their surfaces. The stirring of HFBII solutions leads to the formation of many bubbles of micrometer size. Measuring the electrophoretic mobility of such bubbles, the ζ-potential was determined. Upon compression, the HFBII monolayers form periodic wrinkles of wavelength 11.5 µm, which corresponds to bending elasticity k(c) = 1.1 × 10(-19) J. The wrinkled hydrophobin monolayers are close to a tension-free state, which prevents the Ostwald ripening and provides bubble longevity in HFBII stabilized foams. Films formed between two bubbles are studied by experiments in a capillary cell. In the absence of added electrolyte, the films are electrostatically stabilized. The appearance of protein aggregates is enhanced with the increase of the HFBII and electrolyte concentrations and at pH close to the isoelectric point. When the aggregate concentration is not too high (to block the film thinning), the films reach a state with 12 nm uniform thickness, which corresponds to two surface monolayers plus HFBII tetramers sandwiched between them. In water, the HFBII molecules can stick to each other not only by their hydrophobic moieties but also by their hydrophilic parts. The latter leads to the attachment of HFBII aggregates such as dimers, tetramers, and bigger ones to the interfacial adsorption monolayers, which provides additional stabilization of the liquid films.


Assuntos
Proteínas Fúngicas/química , Tamanho da Partícula , Propriedades de Superfície , Trichoderma/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA