Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Stem Cells Transl Med ; 13(5): 425-435, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38502194

RESUMO

The ultimate goal of cardiac tissue engineering is to generate new muscle to repair or replace the damaged heart. This requires advances in stem cell technologies to differentiate billions of cardiomyocytes, together with advanced biofabrication approaches such as 3D bioprinting to achieve the requisite structure and contractile function. In this concise review, we cover recent progress in 3D bioprinting of cardiac tissue using pluripotent stem cell-derived cardiomyocytes, key design criteria for engineering aligned cardiac tissues, and ongoing challenges in the field that must be addressed to realize this goal.


Assuntos
Bioimpressão , Miócitos Cardíacos , Impressão Tridimensional , Engenharia Tecidual , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Humanos , Engenharia Tecidual/métodos , Bioimpressão/métodos , Animais , Diferenciação Celular , Células-Tronco Pluripotentes/citologia , Alicerces Teciduais/química , Miocárdio/citologia , Miocárdio/metabolismo
2.
JACC CardioOncol ; 5(3): 298-315, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37397084

RESUMO

Background: Doxorubicin is an essential cancer treatment, but its usefulness is hampered by the occurrence of cardiotoxicity. Nevertheless, the pathophysiology underlying doxorubicin-induced cardiotoxicity and the respective molecular mechanisms are poorly understood. Recent studies have suggested involvement of cellular senescence. Objectives: The aims of this study were to establish whether senescence is present in patients with doxorubicin-induced cardiotoxicity and to investigate if this could be used as a potential treatment target. Methods: Biopsies from the left ventricles of patients with severe doxorubicin-induced cardiotoxicity were compared with control samples. Additionally, senescence-associated mechanisms were characterized in 3-dimensional dynamic engineered heart tissues (dyn-EHTs) and human pluripotent stem cell-derived cardiomyocytes. These were exposed to multiple, clinically relevant doses of doxorubicin to recapitulate patient treatment regimens. To prevent senescence, dyn-EHTs were cotreated with the senomorphic drugs 5-aminoimidazole-4-carboxamide ribonucleotide and resveratrol. Results: Senescence-related markers were significantly up-regulated in the left ventricles of patients with doxorubicin-induced cardiotoxicity. Treatment of dyn-EHTs resulted in up-regulation of similar senescence markers as seen in the patients, accompanied by tissue dilatation, decreased force generation, and increased troponin release. Treatment with senomorphic drugs led to decreased expression of senescence-associated markers, but this was not accompanied by improved function. Conclusions: Senescence was observed in the hearts of patients with severe doxorubicin-induced cardiotoxicity, and this phenotype can be modeled in vitro by exposing dyn-EHTs to repeated clinically relevant doses of doxorubicin. The senomorphic drugs 5-aminoimidazole-4-carboxamide ribonucleotide and resveratrol prevent senescence but do not result in functional improvements. These findings suggest that preventing senescence by using a senomorphic during doxorubicin administration might not prevent cardiotoxicity.

3.
Plast Reconstr Surg Glob Open ; 11(6): e5056, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37342306

RESUMO

Fat grafting is an effective treatment for craniofacial deformities. Stromal vascular fraction (SVF) is a concentrated form of adipose derived stem cells that can be isolated from fat. The aim of this clinical trial was to assess the impact of SVF enrichment on craniofacial fat grafting. Methods: Twelve subjects with at least two regions of craniofacial volume deficit were enrolled, and they underwent fat grafting with SVF-enriched or standard fat grafting to each area. All patients had bilateral malar regions injected with SVF-enriched graft on one side and control standard fat grafting to the contralateral side. Outcome assessments included demographic information, volume retention determined by CT scans, SVF cell populations assessed by flow cytometry, SVF cell viability, complications, and appearance ratings. Follow-up was 9 months. Results: All patients had improvement in appearance. There were no serious adverse events. There was no significant difference in volume retention between the SVF-enriched and control regions overall (50.3% versus 57.3%, P = 0.269) or comparing malar regions (51.4% versus 56.7%, P = 0.494). Patient age, smoking status, obesity, and diagnosis of diabetes did not impact volume retention. Cell viability was 77.4% ± 7.3%. Cellular subpopulations were 60.1% ± 11.2% adipose derived stem cells, 12.2 ± 7.0% endothelial cells, and 9.2% ± 4.4% pericytes. A strong positive correlation was found between CD146+ CD31-pericytes and volume retention (R = 0.863, P = 0.027). Conclusions: Autologous fat transfer for reconstruction of craniofacial defects is effective and safe, leading to reliable volume retention. However, SVF enrichment does not significantly impact volume retention.

4.
Sci Transl Med ; 14(666): eabo7047, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36223452

RESUMO

Three-dimensional (3D) bioprinting is a transformative technology for engineering tissues for disease modeling and drug screening and building tissues and organs for repair, regeneration, and replacement. In this Viewpoint, we discuss technological advances in 3D bioprinting, key remaining challenges, and essential milestones toward clinical translation.


Assuntos
Bioimpressão , Impressão Tridimensional , Bioimpressão/métodos , Avaliação Pré-Clínica de Medicamentos , Humanos , Engenharia Tecidual/métodos , Alicerces Teciduais
5.
Biofabrication ; 14(2)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35213846

RESUMO

Here we report the 3D bioprinting of a simplified model of the heart, similar to that observed in embryonic development, where the heart is a linear tube that pumps blood and nutrients to the growing embryo. To this end, we engineered a bioinspired model of the human heart tube using freeform reversible of embedding of suspended hydrogels 3D bioprinting. The 3D bioprinted heart tubes were cellularized using human stem cell-derived cardiomyocytes and cardiac fibroblasts and formed patent, perfusable constructs. Synchronous contractions were achieved ∼3-4 days after fabrication and were maintained for up to a month. Immunofluorescent staining confirmed large, interconnected networks of sarcomeric alpha actinin-positive cardiomyocytes. Electrophysiology was assessed using calcium imaging and demonstrated anisotropic calcium wave propagation along the heart tube with a conduction velocity of ∼5 cm s-1. Contractility and function was demonstrated by tracking the movement of fluorescent beads within the lumen to estimate fluid displacement and bead velocity. These results establish the feasibility of creating a 3D bioprinted human heart tube and serve as an initial step towards engineering more complex heart muscle structures.


Assuntos
Bioimpressão , Bioimpressão/métodos , Humanos , Hidrogéis/química , Miócitos Cardíacos , Impressão Tridimensional , Células-Tronco , Engenharia Tecidual/métodos , Alicerces Teciduais/química
6.
Elife ; 112022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35018887

RESUMO

The extensive crosstalk between the developing heart and lung is critical to their proper morphogenesis and maturation. However, there remains a lack of models that investigate the critical cardio-pulmonary mutual interaction during human embryogenesis. Here, we reported a novel stepwise strategy for directing the simultaneous induction of both mesoderm-derived cardiac and endoderm-derived lung epithelial lineages within a single differentiation of human-induced pluripotent stem cells (hiPSCs) via temporal specific tuning of WNT and nodal signaling in the absence of exogenous growth factors. Using 3D suspension culture, we established concentric cardio-pulmonary micro-Tissues (µTs), and expedited alveolar maturation in the presence of cardiac accompaniment. Upon withdrawal of WNT agonist, the cardiac and pulmonary components within each dual-lineage µT effectively segregated from each other with concurrent initiation of cardiac contraction. We expect that our multilineage differentiation model will offer an experimentally tractable system for investigating human cardio-pulmonary interaction and tissue boundary formation during embryogenesis.


Organs begin developing during the first few months of pregnancy, while the baby is still an embryo. These early stages of development are known as embryogenesis ­ a tightly organized process, during which the embryo forms different layers of stem cells. These cells can be activated to turn into a particular type of cell, such as a heart or a lung cell. The heart and lungs develop from different layers within the embryo, which must communicate with each other for the organs to form correctly. For example, chemical signals can be released from and travel between layers of the embryo, activating processes inside cells located in the different areas. In mouse models, chemical signals and cells travel between developing heart and lung, which helps both organs to form into the correct structure. But it is unclear how well the observations from mouse models translate to heart and lung development in humans. To find out more, Ng et al. developed a human model of heart and lung co-development during embryogenesis using human pluripotent stem cells. The laboratory-grown stem cells were treated with chemical signals, causing them to form different layers that developed into early forms of heart and lung cells. The cells were then transferred into a specific growing condition, where they arranged into three-dimensional structures termed microtissues. Ng et al. found that lung cells developed faster when grown in microtissues with accompanying developing heart cells compared to microtissues containing only developing lung cells. In addition, Ng et al. revealed that the co-developing heart and lung tissues automatically separate from each other during later stage, without the need for chemical signals. This human cell-based model of early forms of co-developing heart and lung cells may help provide researchers with new strategies to probe the underlying mechanisms of human heart and lung interaction during embryogenesis.


Assuntos
Diferenciação Celular , Coração/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Pulmão/citologia , Organoides/citologia , Humanos , Pulmão/fisiologia , Mesoderma , Transdução de Sinais
8.
Sci Transl Med ; 13(603)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290054

RESUMO

The role that mechanical forces play in shaping the structure and function of the heart is critical to understanding heart formation and the etiology of disease but is challenging to study in patients. Engineered heart tissues (EHTs) incorporating human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes have the potential to provide insight into these adaptive and maladaptive changes. However, most EHT systems cannot model both preload (stretch during chamber filling) and afterload (pressure the heart must work against to eject blood). Here, we have developed a new dynamic EHT (dyn-EHT) model that enables us to tune preload and have unconstrained contractile shortening of >10%. To do this, three-dimensional (3D) EHTs were integrated with an elastic polydimethylsiloxane strip providing mechanical preload and afterload in addition to enabling contractile force measurements based on strip bending. Our results demonstrated that dynamic loading improves the function of wild-type EHTs on the basis of the magnitude of the applied force, leading to improved alignment, conduction velocity, and contractility. For disease modeling, we used hiPSC-derived cardiomyocytes from a patient with arrhythmogenic cardiomyopathy due to mutations in the desmoplakin gene. We demonstrated that manifestation of this desmosome-linked disease state required dyn-EHT conditioning and that it could not be induced using 2D or standard 3D EHT approaches. Thus, a dynamic loading strategy is necessary to provoke the disease phenotype of diastolic lengthening, reduction of desmosome counts, and reduced contractility, which are related to primary end points of clinical disease, such as chamber thinning and reduced cardiac output.


Assuntos
Desmossomos , Células-Tronco Pluripotentes Induzidas , Humanos , Contração Miocárdica , Miócitos Cardíacos , Fenótipo , Engenharia Tecidual
9.
J Clin Invest ; 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34292882

RESUMO

The start codon c.1A>G mutation in KLHL24, encoding ubiquitin-ligase KLHL24, results in the loss of 28 N-terminal amino acids (KLHL24-ΔN28) by skipping the initial start codon. In skin, KLHL24-ΔN28 leads to gain of function, excessively targeting intermediate filament keratin-14 for proteasomal degradation, ultimately causing epidermolysis bullosa simplex (EBS). The majority of these EBS-patients are also diagnosed with dilated cardiomyopathy (DCM), but the pathological mechanism in the heart is unknown. As desmin is the cardiac homologue of keratin-14, we hypothesized that KLHL24-ΔN28 leads to excessive degradation of desmin, resulting in DCM. Dynamically loaded engineered heart tissues (dyn-EHTs) were generated from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes from two patients and three (non)familial controls. Ten-fold lower desmin protein levels were observed in patient-derived dyn-EHTs, in line with diminished desmin levels detected in patients' explanted heart. This was accompanied by tissue dilatation, impaired mitochondrial function, decreased force values and increased cardiomyocyte stress. HEK293 transfection studies confirmed KLHL24-mediated desmin degradation. KLHL24 RNA interference or direct desmin overexpression recovered desmin protein levels, restoring morphology and function in patient-derived dyn-EHTs. To conclude, presence of KLHL24-ΔN28 in cardiomyocytes leads to excessive degradation of desmin, affecting tissue morphology and function, that can be prevented by restoring desmin protein levels.

10.
Sci Rep ; 11(1): 11502, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075068

RESUMO

Cardiac two-dimensional tissues were engineered using biomimetic micropatterns based on the fibronectin-rich extracellular matrix (ECM) of the embryonic heart. The goal of this developmentally-inspired, in vitro approach was to identify cell-cell and cell-ECM interactions in the microenvironment of the early 4-chambered vertebrate heart that drive cardiomyocyte organization and alignment. To test this, biomimetic micropatterns based on confocal imaging of fibronectin in embryonic chick myocardium were created and compared to control micropatterns designed with 2 or 20 µm wide fibronectin lines. Results show that embryonic chick cardiomyocytes have a unique density-dependent alignment on the biomimetic micropattern that is mediated in part by N-cadherin, suggesting that both cell-cell and cell-ECM interactions play an important role in the formation of aligned myocardium. Human induced pluripotent stem cell-derived cardiomyocytes also showed density-dependent alignment on the biomimetic micropattern but were overall less well organized. Interestingly, the addition of human adult cardiac fibroblasts and conditioning with T3 hormone were both shown to increase human cardiomyocyte alignment. In total, these results show that cardiomyocyte maturation state, cardiomyocyte-cardiomyocyte and cardiomyocyte-fibroblast interactions, and cardiomyocyte-ECM interactions can all play a role when engineering anisotropic cardiac tissues in vitro and provides insight as to how these factors may influence cardiogenesis in vivo.


Assuntos
Diferenciação Celular , Fibronectinas/química , Células-Tronco Pluripotentes Induzidas/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Animais , Materiais Biomiméticos/química , Embrião de Galinha , Matriz Extracelular/química , Humanos
11.
Sci Adv ; 7(15)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33827809

RESUMO

Graphene with its unique electrical properties is a promising candidate for carbon-based biosensors such as microelectrodes and field effect transistors. Recently, graphene biosensors were successfully used for extracellular recording of action potentials in electrogenic cells; however, intracellular recordings remain beyond their current capabilities because of the lack of an efficient cell poration method. Here, we present a microelectrode platform consisting of out-of-plane grown three-dimensional fuzzy graphene (3DFG) that enables recording of intracellular cardiac action potentials with high signal-to-noise ratio. We exploit the generation of hot carriers by ultrafast pulsed laser for porating the cell membrane and creating an intimate contact between the 3DFG electrodes and the intracellular domain. This approach enables us to detect the effects of drugs on the action potential shape of human-derived cardiomyocytes. The 3DFG electrodes combined with laser poration may be used for all-carbon intracellular microelectrode arrays to allow monitoring of the cellular electrophysiological state.

12.
Tissue Eng Part A ; 27(5-6): 297-310, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-30760135

RESUMO

Severe peripheral nerve injuries have devastating consequences on the quality of life in affected patients, and they represent a significant unmet medical need. Destruction of nerve fibers results in denervation of targeted muscles, which, subsequently, undergo progressive atrophy and loss of function. Timely restoration of neural innervation to muscle fibers is crucial to the preservation of muscle homeostasis and function. The goal of this study was to evaluate the impact of addition of adipose stem cells (ASCs) to polycaprolactone (PCL) nerve conduit guides on peripheral nerve repair and functional muscle recovery in the setting of a critical size nerve defect. To this end, peripheral nerve injury was created by surgically ablating 6 mm of the common peroneal nerve in a rat model. A PCL nerve guide, filled with ASCs and/or poloxamer hydrogel, was sutured to the nerve ends. Negative and positive controls included nerve ablation only (no repair), and reversed polarity autograft nerve implant, respectively. Tibialis anterior (TA) muscle function was assessed at 4, 8, and 12 weeks postinjury, and nerve and muscle tissue was retrieved at the 12-week terminal time point. Inclusion of ASCs in the PCL nerve guide elicited statistically significant time-dependent increases in functional recovery (contraction) after denervation; ∼25% higher than observed in acellular (poloxamer-filled) implants and indistinguishable from autograft implants, respectively, at 12 weeks postinjury (p < 0.05, n = 7-8 in each group). Analysis of single muscle fiber cross-sectional area (CSA) revealed that ASC-based treatment of nerve injury provided a better recapitulation of the overall distribution of muscle fiber CSAs observed in the contralateral TA muscle of uninjured limbs. In addition, the presence of ASCs was associated with improved features of re-innervation distal to the defect, with respect to neurofilament and S100 (Schwann cell marker) expression. In conclusion, these initial studies indicate significant benefits of inclusion of ASCs to the rate and magnitude of both peripheral nerve regeneration and functional recovery of muscle contraction, to levels equivalent to autograft implantation. These findings have important implications to improved nerve repair, and they provide input for future work directed to restoration of nerve and muscle function after polytraumatic injury. Impact Statement This works explores the application of adipose stem cells (ASCs) for peripheral nerve regeneration in a rat model. Herein, we demonstrate that the addition of ASCs in poloxamer-filled PCL nerve guide conduits impacts nerve regeneration and recovery of muscle function, to levels equivalent to autograft implantation, which is considered to be the current gold standard treatment. This study builds on the importance of a timely restoration of innervation to muscle fibers for preservation of muscle homeostasis, and it will provide input for future work aiming at restoring nerve and muscle function after polytraumatic injury.


Assuntos
Traumatismos dos Nervos Periféricos , Nervo Fibular , Animais , Humanos , Músculo Esquelético , Regeneração Nervosa , Qualidade de Vida , Ratos , Nervo Isquiático , Células-Tronco
13.
Ann Surg ; 273(5): 1004-1011, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30985369

RESUMO

OBJECTIVE: This study aimed to prospectively assess outcomes for surgical autologous fat transfer (AFT) applied for traumatic and postsurgical craniofacial deformities. The minimally invasive nature of AFT has potential for reduced risk and superior outcomes compared with current reconstructive options. BACKGROUND: Craniofacial deformities have functional and psychosocial sequelae and can profoundly affect quality of life. Traditional reconstructive options are invasive, invasive, complex, and often lack precision in outcomes. Although AFT is safe, effective, and minimally invasive, only anecdotal evidence exists for reconstruction of craniofacial deformities. METHODS: In this Institutional Review Board-approved prospective cohort study, 20 subjects underwent AFT (average volume: 23.9 ±â€Š13.2 mL). Volume retention over time was determined using high-resolution computed tomography. Flow cytometry was used to assess cellular subpopulations and viability in the stromal vascular fraction. Quality of life assessments were performed. After the completion of 9-month follow-up, 5 subjects were enrolled for a second treatment. RESULTS: No serious adverse events occurred. Volume retention averaged 63 ±â€Š17% at 9 months. Three-month retention strongly predicted 9-month retention (r=0.996, P < 0.0001). There was no correlation between the total volume injected and retention. Patients undergoing a second procedure had similar volume retention as the first (P = 0.05). Age, sex, body mass index, and stromal vascular fraction cellular composition did not impact retention. Surprisingly, former smokers had greater volume retention at 9 months compared with nonsmokers (74.4% vs 56.2%, P = 0.009). Satisfaction with physical appearance (P = 0.002), social relationships (P = 0.02), and social functioning quality of life (P = 0.05) improved from baseline to 9 months. CONCLUSIONS: For craniofacial defects, AFT is less invasive and safer than traditional reconstructive options. It is effective, predictable, and reaches volume stability at 3 months. Patient-reported outcomes demonstrate a positive life-changing impact.


Assuntos
Tecido Adiposo/transplante , Anormalidades Craniofaciais/cirurgia , Medidas de Resultados Relatados pelo Paciente , Procedimentos de Cirurgia Plástica/métodos , Qualidade de Vida , Adulto , Anormalidades Craniofaciais/diagnóstico , Feminino , Seguimentos , Sobrevivência de Enxerto , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Tomografia Computadorizada por Raios X , Transplante Autólogo , Adulto Jovem
14.
Sci Transl Med ; 12(527)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969488

RESUMO

Severe injuries to peripheral nerves are challenging to repair. Standard-of-care treatment for nerve gaps >2 to 3 centimeters is autografting; however, autografting can result in neuroma formation, loss of sensory function at the donor site, and increased operative time. To address the need for a synthetic nerve conduit to treat large nerve gaps, we investigated a biodegradable poly(caprolactone) (PCL) conduit with embedded double-walled polymeric microspheres encapsulating glial cell line-derived neurotrophic factor (GDNF) capable of providing a sustained release of GDNF for >50 days in a 5-centimeter nerve defect in a rhesus macaque model. The GDNF-eluting conduit (PCL/GDNF) was compared to a median nerve autograft and a PCL conduit containing empty microspheres (PCL/Empty). Functional testing demonstrated similar functional recovery between the PCL/GDNF-treated group (75.64 ± 10.28%) and the autograft-treated group (77.49 ± 19.28%); both groups were statistically improved compared to PCL/Empty-treated group (44.95 ± 26.94%). Nerve conduction velocity 1 year after surgery was increased in the PCL/GDNF-treated macaques (31.41 ± 15.34 meters/second) compared to autograft (25.45 ± 3.96 meters/second) and PCL/Empty (12.60 ± 3.89 meters/second) treatment. Histological analyses included assessment of Schwann cell presence, myelination of axons, nerve fiber density, and g-ratio. PCL/GDNF group exhibited a statistically greater average area occupied by individual Schwann cells at the distal nerve (11.60 ± 33.01 µm2) compared to autograft (4.62 ± 3.99 µm2) and PCL/Empty (4.52 ± 5.16 µm2) treatment groups. This study demonstrates the efficacious bridging of a long peripheral nerve gap in a nonhuman primate model using an acellular, biodegradable nerve conduit.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial/administração & dosagem , Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Regeneração Nervosa/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Preparações de Ação Retardada , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Macaca , Regeneração Nervosa/efeitos dos fármacos , Células de Schwann/efeitos dos fármacos , Células de Schwann/metabolismo
15.
Sci Adv ; 5(8): eaax0729, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31467978

RESUMO

Cell-cell communication plays a pivotal role in coordination and function of biological systems. Three-dimensional (3D) spheroids provide venues to explore cellular communication for tissue development and drug discovery, as their 3D architecture mimics native in vivo microenvironments. Cellular electrophysiology is a prevalent signaling paradigm for studying electroactive cells. Currently, electrophysiological studies do not provide direct, multisite, simultaneous investigation of tissues in 3D. In this study, 3D self-rolled biosensor arrays (3D-SR-BAs) of either active field-effect transistors or passive microelectrodes were implemented to interface human cardiac spheroids in 3D. The arrays provided continuous and stable multiplexed recordings of field potentials with high sensitivity and spatiotemporal resolution, supported with simultaneous calcium imaging. Our approach enables electrophysiological investigation and monitoring of the complex signal transduction in 3D cellular assemblies toward an organ-on-an-electronic-chip (organ-on-e-chip) platform for tissue maturation investigations and development of drugs for disease treatment, such as arrhythmias.


Assuntos
Técnicas Biossensoriais/métodos , Comunicação Celular , Microeletrodos , Esferoides Celulares/fisiologia , Humanos
16.
Plast Reconstr Surg ; 142(5): 1349-1352, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30511990

RESUMO

Soft-tissue deficits in amputation stumps can lead to significant pain and disability. An emerging treatment option is stem cell-enriched fat grafting. This is the first study assessing the potential for this treatment modality in lower extremity amputation sites. In this prospective cohort study, five injured military personnel suffering from pain and limited function at amputation sites were recruited. Fat grafting enriched with stromal vascular fraction was performed at amputation sites to provide additional subcutaneous tissue padding over bony structures. Outcomes measures included complications, demographic data, physical examination, cellular subpopulations, cell viability, graft volume retention, pain, Lower Extremity Functional Scale, Functional Mobility Assessment, 36-Item Short-Form Health Survey, and rates of depression. Follow-up was 2 years. There were no significant complications. Volume retention was 61.5 ± 24.0 percent. Overall cell viability of the stromal vascular fraction was significantly correlated with volume retention (p = 0.016). There was no significant correlation between percentage of adipose-derived stem cells or number of cells in the stromal vascular fraction and volume retention. There was a nonsignificant trend toward improvement in pain scores (3.0 ± 2.5 to 1.2 ± 1.6; p = 0.180 at 2 years). There were no significant changes in disability indexes. Results from this pilot study demonstrate that stromal vascular fraction-enriched fat grafting is a safe, novel modality for the treatment of symptomatic soft-tissue defects in traumatic lower extremity amputations. Volume retention can be anticipated at slightly over 60 percent. Further studies are needed to assess efficacy. CLINICAL QUESTION/LEVEL OF EVIDENCE:: Therapeutic, IV.


Assuntos
Tecido Adiposo/transplante , Lesões dos Tecidos Moles/terapia , Transplante de Células-Tronco/métodos , Células Estromais/transplante , Adipócitos/transplante , Cotos de Amputação , Traumatismos por Explosões/cirurgia , Humanos , Traumatismos da Perna/cirurgia , Militares , Duração da Cirurgia , Dor Pós-Operatória/prevenção & controle , Pennsylvania , Projetos Piloto , Estudos Prospectivos
17.
Front Immunol ; 9: 1642, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087676

RESUMO

BACKGROUND: Vascularized composite allotransplantation opens new possibilities in reconstructive transplantation such as hand or face transplants. Lifelong immunosuppression and its side-effects are the main drawbacks of this procedure. Mesenchymal stem cells (MSCs) have clinically useful immunomodulatory effects and may be able to reduce the burden of chronic immunosuppression. Herein, we assess and compare characteristics and immunomodulatory capacities of bone marrow- and adipose tissue-derived MSCs isolated from the same human individual across defined human leukocyte antigen (HLA) barriers. MATERIALS AND METHODS: Samples of omental (o.) adipose tissue, subcutaneous (s.c.) adipose tissue, and bone marrow aspirate from 10 human organ donors were retrieved and MSCs isolated. Cells were characterized by flow cytometry and differentiated in three lineages: adipogenic, osteogenic, and chondrogenic. In mixed lymphocyte reactions, the ability of adipose-derived mesenchymal stem cells (ASCs) and bone marrow-derived mesenchymal stem cells (BMSCs) to suppress the immune response was assessed and compared within individual donors. HLA mismatched or mitogen stimulations were analyzed in co-culture with different MSC concentrations. Supernatants were analyzed for cytokine contents. RESULTS: All cell types, s.c.ASC, o.ASC, and BMSC demonstrated individual differentiation potential and cell surface markers. Immunomodulating effects were dependent on dose and cell passage. Proliferation of responder cells was most effectively suppressed by s.c.ASCs and combination with BMSC resulted in highly efficient immunomodulation. Immunomodulation was not cell contact-dependent and cells demonstrated a specific cytokine secretion. CONCLUSION: When human ASCs and BMSCs are isolated from the same individual, both show effective immunomodulation across defined HLA barriers in vitro. We demonstrate a synergistic effect when cells from the same biologic system were combined. This cell contact-independent function underlines the potential of clinical systemic application of MSCs.

18.
Muscle Nerve ; 58(2): 251-260, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29406624

RESUMO

INTRODUCTION: Peripheral nerve damage is associated with high long-term morbidity. Because of beneficial secretome, immunomodulatory effects, and ease of clinical translation, transplantation with adipose-derived stem cells (ASC) represents a promising therapeutic modality. METHODS: Effect of ASC delivery in poloxamer hydrogel was assessed in a rat sciatic nerve model of critical-sized (1.5 cm) peripheral nerve injury. Nerve/muscle unit regeneration was assessed via immunostaining explanted nerve, quantitative polymerase chain reaction (qPCR), and histological analysis of reinnervating gastrocnemius muscle. RESULTS: On the basis of viability data, 10% poloxamer hydrogel was selected for in vivo study. Six weeks after transection and repair, the group treated with poloxamer delivered ASCs demonstrated longest axonal regrowth. The qPCR results indicated that the inclusion of ASCs appeared to result in expression of factors that aid in reinnervating muscle tissue. DISCUSSION: Delivery of ASCs in poloxamer addresses multiple facets of the complexity of nerve/muscle unit regeneration, representing a promising avenue for further study. Muscle Nerve 58: 251-260, 2018.


Assuntos
Adipócitos/transplante , Hidrogéis , Regeneração Nervosa/fisiologia , Nervos Periféricos/crescimento & desenvolvimento , Poloxâmero , Transplante de Células-Tronco/métodos , Adulto , Animais , Axônios/ultraestrutura , Feminino , Humanos , Imuno-Histoquímica , Neurônios Motores , Fibras Musculares Esqueléticas , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/inervação , Ratos , Nervo Isquiático/lesões , Neuropatia Ciática/terapia
19.
Cell Mol Bioeng ; 11(5): 407-418, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31719891

RESUMO

INTRODUCTION: Cell-cell communication plays a pivotal role in biological systems' coordination and function. Electrical properties have been linked to specification and differentiation of stem cells into targeted progeny, such as neurons and cardiomyocytes. Currently, there is a critical need in developing new ways to complement fluorescent indicators, such as Ca2+-sensitive dyes, for direct electrophysiological measurements of cells and tissue. Here, we report a unique transparent and biocompatible graphene-based electrical platform that enables electrical and optical investigation of human embryonic stem cell-derived cardiomyocytes' (hESC-CMs) intracellular processes and intercellular communication. METHODS: Graphene, a honeycomb sp2 hybridized two-dimensional carbon lattice, was synthesized using low pressure chemical vapor deposition system, and was tested for biocompatibility. Au and graphene microelectrode arrays (MEAs) were fabricated using well-established microfabrication methods. Au and graphene MEAs were interfaced with hESC-CMs to perform both optical and electrical recordings. RESULTS: Optical imaging and Raman spectroscopy confirmed the presence of monolayer graphene. Viability assay showed biocompatibility of graphene. Electrochemical characterization proved graphene's functional activity. Nitric acid treatment further enhanced the electrochemical properties of graphene. Graphene electrodes' transparency enabled both optical and electrical recordings from hESC-CMs. Graphene MEA detected changes in beating frequency and field potential duration upon ß-adrenergic receptor agonist treatment. CONCLUSION: The transparent graphene platform enables the investigation of both intracellular and intercellular communication processes and will create new avenues for bidirectional communication (sensing and stimulation) with electrically active tissues and will set the ground for investigations reported diseases such as Alzheimer, Parkinson's disease and arrhythmias.

20.
Plast Reconstr Surg ; 139(2): 403e-414e, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28121868

RESUMO

BACKGROUND: In vascularized composite allotransplantation, medication nonadherence leads to increased acute rejections. Improving medication adherence would improve overall allograft survival. Regionally delivered immunosuppression, targeted to sites of allorecognition, may reduce or eliminate the need for daily systemic immunosuppression. METHODS: The authors developed biodegradable FK disks containing FK506-loaded double-walled microspheres and tested their efficacy at preventing rejection in a Brown-Norway-to-Lewis rat hindlimb transplantation model. In some experimental group animals, one FK disk was implanted subcutaneously either in native nontransplanted leg or in a transplanted allograft. Regular blood FK506 levels were measured. The endpoint was 180-day allograft survival or grade 3 rejection. At the endpoint, tissue FK506 levels were measured and mixed lymphocytic reaction was performed. RESULTS: A single FK disk maintained systemic blood FK506 levels between 5 and 15 ng/ml for 146 ± 11.1 days. After that, the levels declined to less than 5 ng/ml through the endpoint. There was significantly increased FK506 concentration in groin lymph nodes draining the implanted FK disk. Compared with other groups, animals with an FK disk in the transplanted allograft had 100 percent allograft survival to more than 180 days despite subtherapeutic levels below 5 ng/ml. In these animals, significant T-cell hyporesponsiveness was seen in groin lymph nodes draining the FK disk compared with robust splenic T-cell proliferation. CONCLUSIONS: Sustained regional immunosuppression (with a single FK506 disk) maintained the allograft by means of a high regional concentration of FK506. Notably, this was achieved at subtherapeutic blood concentrations of FK506, without any further systemic FK506 administration.


Assuntos
Portadores de Fármacos , Rejeição de Enxerto/prevenção & controle , Imunossupressores/uso terapêutico , Microesferas , Tacrolimo/uso terapêutico , Alotransplante de Tecidos Compostos Vascularizados , Animais , Masculino , Ratos , Ratos Endogâmicos BN
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA