Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Transl Med ; 11(483)2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30867321

RESUMO

There is an urgent global need for a safe macrofilaricide drug to accelerate elimination of the neglected tropical diseases onchocerciasis and lymphatic filariasis. From an anti-infective compound library, the macrolide veterinary antibiotic, tylosin A, was identified as a hit against Wolbachia This bacterial endosymbiont is required for filarial worm viability and fertility and is a validated target for macrofilaricidal drugs. Medicinal chemistry was undertaken to develop tylosin A analogs with improved oral bioavailability. Two analogs, A-1535469 and A-1574083, were selected. Their efficacy was tested against the gold-standard second-generation tetracycline antibiotics, doxycycline and minocycline, in mouse and gerbil infection models of lymphatic filariasis (Brugia malayi and Litomosoides sigmodontis) and onchocerciasis (Onchocerca ochengi). A 1- or 2-week course of oral A-1535469 or A-1574083 provided >90% Wolbachia depletion from nematodes in infected animals, resulting in a block in embryogenesis and depletion of microfilarial worm loads. The two analogs delivered comparative or superior efficacy compared to a 3- to 4-week course of doxycycline or minocycline. A-1574083 (now called ABBV-4083) was selected for further preclinical testing. Cardiovascular studies in dogs and toxicology studies in rats and dogs revealed no adverse effects at doses (50 mg/kg) that achieved plasma concentrations >10-fold above the efficacious concentration. A-1574083 (ABBV-4083) shows potential as an anti-Wolbachia macrolide with an efficacy, pharmacology, and safety profile that is compatible with a short-term oral drug course for treating lymphatic filariasis and onchocerciasis.


Assuntos
Filariose Linfática/tratamento farmacológico , Filariose Linfática/microbiologia , Macrolídeos/administração & dosagem , Macrolídeos/uso terapêutico , Oncocercose/tratamento farmacológico , Oncocercose/microbiologia , Wolbachia/fisiologia , Administração Oral , Animais , Modelos Animais de Doenças , Filariose Linfática/sangue , Feminino , Macrolídeos/efeitos adversos , Masculino , Camundongos Endogâmicos BALB C , Camundongos SCID , Oncocercose/sangue , Resultado do Tratamento , Tilosina/sangue , Tilosina/síntese química , Tilosina/química , Tilosina/uso terapêutico
2.
Brain Behav Immun ; 54: 252-259, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26880342

RESUMO

Several lines of evidence indicate that the sympathetic nervous system (SNS) might be involved in the pathogenesis and progression of retroviral infections. However, experimental data are scarce and findings inconsistent. Here, we investigated the role of the SNS during acute infection with Friend virus (FV), a pathogenic murine retrovirus that causes polyclonal proliferation of erythroid precursor cells and splenomegaly in adult mice. Experimental animals were infected with FV complex, and viral load, spleen weight, and splenic noradrenaline (NA) concentration was analyzed until 25 days post infection. Results show that FV infection caused a massive but transient depletion in splenic NA during the acute phase of the disease. At the peak of the virus-induced splenomegaly, splenic NA concentration was reduced by about 90% compared to naïve uninfected mice. Concurrently, expression of the catecholamine degrading enzymes monoamine oxidase A (MAO-A) and catechol-O-methyltransferase (COMT) was significantly upregulated in immune cells of the spleen. Pharmacological inhibition of MAO-A and COMT by the selective inhibitors clorgyline and 3,5-dinitrocatechol, respectively, efficiently blocked NA degradation and significantly reduced viral load and virus-induced splenomegaly. In contrast, chemical sympathectomy prior to FV inoculation aggravated the acute infection and extended the duration of the disease. Together these findings demonstrate that catecholamine availability at the site of viral replication is an important factor affecting the course of retroviral infections.


Assuntos
Catecolaminas/uso terapêutico , Vírus da Leucemia Murina de Friend/isolamento & purificação , Infecções por Retroviridae/terapia , Animais , Catecol O-Metiltransferase/metabolismo , Catecolaminas/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Monoaminoxidase/metabolismo , Norepinefrina/metabolismo , Retroviridae , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/metabolismo , Infecções por Retroviridae/virologia , Baço/imunologia , Simpatectomia Química , Sistema Nervoso Simpático/virologia , Carga Viral
3.
PLoS Pathog ; 11(1): e1004616, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25611587

RESUMO

Helminths immunomodulate their hosts and induce a regulatory, anti-inflammatory milieu that prevents allergies and autoimmune diseases. Helminth immunomodulation may benefit sepsis outcome by preventing exacerbated inflammation and severe pathology, but the influence on bacterial clearance remains unclear. To address this, mice were chronically infected with the filarial nematode Litomosoides sigmodontis (L.s.) and the outcome of acute systemic inflammation caused by i.p. Escherichia coli injection was determined. L.s. infection significantly improved E. coli-induced hypothermia, bacterial clearance and sepsis survival and correlated with reduced concentrations of associated pro-inflammatory cytokines/chemokines and a less pronounced pro-inflammatory macrophage gene expression profile. Improved sepsis outcome in L.s.-infected animals was mediated by macrophages, but independent of the alternatively activated macrophage subset. Endosymbiotic Wolbachia bacteria that are present in most human pathogenic filariae, as well as L.s., signal via TLR2 and modulate macrophage function. Here, gene expression profiles of peritoneal macrophages from L.s.-infected mice revealed a downregulation of genes involved in TLR signaling, and pulsing of macrophages in vitro with L.s. extract reduced LPS-triggered activation. Subsequent transfer improved sepsis outcome in naïve mice in a Wolbachia- and TLR2-dependent manner. In vivo, phagocytosis was increased in macrophages from L.s.-infected wild type, but not TLR2-deficient animals. In association, L.s. infection neither improved bacterial clearance in TLR2-deficient animals nor ameliorated E. coli-induced hypothermia and sepsis survival. These results indicate that chronic L.s. infection has a dual beneficial effect on bacterial sepsis, reducing pro-inflammatory immune responses and improving bacterial control. Thus, helminths and their antigens may not only improve the outcome of autoimmune and allergic diseases, but may also present new therapeutic approaches for acute inflammatory diseases that do not impair bacterial control.


Assuntos
Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Filariose/imunologia , Filarioidea/imunologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Sepse/prevenção & controle , Animais , Doença Crônica , Coinfecção , Infecções por Escherichia coli/prevenção & controle , Feminino , Filarioidea/microbiologia , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Sepse/imunologia , Wolbachia/imunologia
4.
Brain Behav Immun ; 38: 100-10, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24440144

RESUMO

The sympathetic nervous system (SNS) plays a crucial role in the course and development of autoimmune disease in Fas-deficient lpr/lpr mice. As regulatory T cells (Tregs) are considered important modulators of autoimmune processes, we analyzed the interaction between the SNS and Tregs in this murine model of lymphoproliferative disease. We found that the percentage of Tregs among CD4(+) T cells is increased in the spleen, lymph nodes, and thymus of lpr/lpr mice as compared to age-matched C57Bl/6J (B6) mice. Furthermore, noradrenaline (NA), the main sympathetic neurotransmitter, induced apoptosis in B6- and lpr/lpr-derived Tregs. NA also reduced the frequency of Foxp3(+) cells and Foxp3 mRNA expression via ß2-adrenoceptor (ß2-AR)-mediated mechanisms in a concentration and time-dependent manner. Destruction of peripheral sympathetic nerves by 6-hydroxydopamine significantly increased the percentage of Tregs in B6 control mice to an extent comparable to aged-matched lpr/lpr mice. The concentration of splenic NA negatively correlated with the frequency of CD4(+)Foxp3(+) Tregs. Additionally, 60days after sympathectomy, a partial recovery of NA concentrations led to Treg percentages comparable to those of intact, vehicle-treated controls. Immunohistochemical analysis of the spleen revealed localization of single Foxp3(+) Tregs in proximity to NA-producing nerve fibers, providing an interface between Tregs and the SNS. Taken together, our data suggest a relation between the degree of splenic sympathetic innervation and the size of the Treg compartment. While there are few examples of endogenous substances capable of affecting Tregs, our results provide a possible explanation of how the magnitude of the Treg compartment in the spleen can be regulated by the SNS.


Assuntos
Apoptose , Fatores de Transcrição Forkhead/metabolismo , Transtornos Linfoproliferativos/imunologia , Norepinefrina/metabolismo , Sistema Nervoso Simpático/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Transtornos Linfoproliferativos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Baço/inervação , Baço/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA