Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 127(6): 1895-905, 2005 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-15701024

RESUMO

One-electron oxidation of [(Me(n)tpa)Ir(I)(ethene)]+ complexes (Me(3)tpa = N,N,N-tri(6-methyl-2-pyridylmethyl)amine; Me(2)tpa = N-(2-pyridylmethyl)-N,N,-di[(6-methyl-2-pyridyl)methyl]-amine) results in relatively stable, five-coordinate Ir(II)-olefin species [(Me(n)tpa)Ir(II)(ethene)](2+) (1(2+): n = 3; 2(2+): n = 2). These contain a "vacant site" at iridium and a "non-innocent" ethene fragment, allowing radical type addition reactions at both the metal and the ethene ligand. The balance between metal- and ligand-centered radical behavior is influenced by the donor capacity of the solvent. In weakly coordinating solvents, 1(2+) and 2(2+) behave as moderately reactive metallo-radicals. Radical coupling of 1(2+) with NO in acetone occurs at the metal, resulting in dissociation of ethene and formation of the stable nitrosyl complex [(Me(3)tpa)Ir(NO)](2+) (6(2+)). In the coordinating solvent MeCN, 1(2+) generates more reactive radicals; [(Me(3)tpa)Ir(MeCN)(ethene)](2+) (9(2+)) by MeCN coordination, and [(Me(3)tpa)Ir(II)(MeCN)](2+) (10(2+)) by substitution of MeCN for ethene. Complex 10(2+) is a metallo-radical, like 1(2+) but more reactive. DFT calculations indicate that 9(2+) is intermediate between the slipped-olefin Ir(II)(CH(2)=CH(2)) and ethyl radical Ir(III)-CH(2)-CH(2). resonance structures, of which the latter prevails. The ethyl radical character of 9(2+) allows radical type addition reactions at the ethene ligand. Complex 2(2+) behaves similarly in MeCN. In the absence of further reagents, 1(2+) and 2(2+) convert to the ethylene bridged species [(Me(n)tpa)(MeCN)Ir(III)(mu(2)-C(2)H(4))Ir(III)(MeCN)(Me(3)tpa)](4+) (n = 3: 3(4+); n = 2: 4(4+)) in MeCN. In the presence of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxo), formation of 3(4+) from 1(2+) in MeCN is completely suppressed and only [(Me(3)tpa)Ir(III)(TEMPO(-))(MeCN)](2+) (7(2+)) is formed. This is thought to proceed via radical coupling of TEMPO at the metal center of 10(2+). In the presence of water, hydrolysis of the coordinated acetonitrile fragment of 7(2+) results in the acetamido complex [(Me(3)tpa)Ir(III)(NHC(O)CH(3)))(TEMPOH)](2+) (8(2+)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA