Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3837, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380662

RESUMO

Climate change is leading to species redistributions. In the tundra biome, shrubs are generally expanding, but not all tundra shrub species will benefit from warming. Winner and loser species, and the characteristics that may determine success or failure, have not yet been fully identified. Here, we investigate whether past abundance changes, current range sizes and projected range shifts derived from species distribution models are related to plant trait values and intraspecific trait variation. We combined 17,921 trait records with observed past and modelled future distributions from 62 tundra shrub species across three continents. We found that species with greater variation in seed mass and specific leaf area had larger projected range shifts, and projected winner species had greater seed mass values. However, trait values and variation were not consistently related to current and projected ranges, nor to past abundance change. Overall, our findings indicate that abundance change and range shifts will not lead to directional modifications in shrub trait composition, since winner and loser species share relatively similar trait spaces.


Assuntos
Ecossistema , Tundra , Sementes , Mudança Climática , Fenótipo
2.
PLoS One ; 16(5): e0251625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34010344

RESUMO

Numerous long-term, free-air plant growth facilities currently explore vegetation responses to the ongoing climate change in northern latitudes. Open top chamber (OTC) experiments as well as the experimental set-ups with active warming focus on many facets of plant growth and performance, but information on morphological alterations of plant cells is still scarce. Here we compare the effects of in-situ warming on leaf epidermal cell expansion in dwarf birch, Betula nana in Finland, Greenland, and Poland. The localities of the three in-situ warming experiments represent contrasting regions of B. nana distribution, with the sites in Finland and Greenland representing the current main distribution in low and high Arctic, respectively, and the continental site in Poland as a B. nana relict Holocene microrefugium. We quantified the epidermal cell lateral expansion by microscopic analysis of B. nana leaf cuticles. The leaves were produced in paired experimental treatment plots with either artificial warming or ambient temperature. At all localities, the leaves were collected in two years at the end of the growing season to facilitate between-site and within-site comparison. The measured parameters included the epidermal cell area and circumference, and using these, the degree of cell wall undulation was calculated as an Undulation Index (UI). We found enhanced leaf epidermal cell expansion under experimental warming, except for the extremely low temperature Greenland site where no significant difference occurred between the treatments. These results demonstrate a strong response of leaf growth at individual cell level to growing season temperature, but also suggest that in harsh conditions other environmental factors may limit this response. Our results provide evidence of the relevance of climate warming for plant leaf maturation and underpin the importance of studies covering large geographical scales.


Assuntos
Betula/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Betula/citologia , Mudança Climática , Células Epidérmicas/citologia , Finlândia , Groenlândia , Temperatura Alta , Meteorologia , Folhas de Planta/citologia , Polônia , Estações do Ano
3.
Proc Natl Acad Sci U S A ; 117(52): 33334-33344, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318214

RESUMO

Arctic sea ice extent (SIE) is declining at an accelerating rate with a wide range of ecological consequences. However, determining sea ice effects on tundra vegetation remains a challenge. In this study, we examined the universality or lack thereof in tundra shrub growth responses to changes in SIE and summer climate across the Pan-Arctic, taking advantage of 23 tundra shrub-ring chronologies from 19 widely distributed sites (56°N to 83°N). We show a clear divergence in shrub growth responses to SIE that began in the mid-1990s, with 39% of the chronologies showing declines and 57% showing increases in radial growth (decreasers and increasers, respectively). Structural equation models revealed that declining SIE was associated with rising air temperature and precipitation for increasers and with increasingly dry conditions for decreasers. Decreasers tended to be from areas of the Arctic with lower summer precipitation and their growth decline was related to decreases in the standardized precipitation evapotranspiration index. Our findings suggest that moisture limitation, associated with declining SIE, might inhibit the positive effects of warming on shrub growth over a considerable part of the terrestrial Arctic, thereby complicating predictions of vegetation change and future tundra productivity.


Assuntos
Camada de Gelo , Desenvolvimento Vegetal , Regiões Árticas , Clima , Umidade , Modelos Teóricos , Estações do Ano , Solo , Temperatura
4.
Int J Biometeorol ; 63(2): 167-181, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30511167

RESUMO

The High Arctic region has experienced marked climate fluctuations within the past decades strongly affecting tundra shrub growth. However, the spatial variability in dwarf shrub growth responses in this remote region remains largely unknown. This study characterizes temperature sensitivity of radial growth of two willow dwarf shrub species from two distinct High Arctic sites. The dwarf shrub Salix arctica from Northern Greenland (82°N), which has a dry continental High Arctic climate, is linked with Salix polaris from central Svalbard (78° N), which experiences a more oceanic High Arctic climate with relatively mild winters. We found similar positive and significant relationships between annual growth of both Salix dwarf shrub species and July-August air temperatures (1960-2010), despite different temperature regimes and shrub growth rates at the two sites. Also, Salix dwarf shrub growth was significantly negatively correlated with Arctic and North Atlantic Oscillation (AO/NAO) indices; S. arctica from Northern Greenland was negatively correlated with previous autumn (AO index) and current summer AO and NAO indices, and S. polaris with the summer NAO index. The results highlight the importance of both local and regional climatic drivers for dwarf willow shrub growth in harsh polar desert habitats and are a step in the direction of identifying and scaling changes in plant growth across the High Arctic.


Assuntos
Salix/crescimento & desenvolvimento , Temperatura , Clima , Groenlândia , Svalbard
5.
Nature ; 562(7725): 57-62, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30258229

RESUMO

The tundra is warming more rapidly than any other biome on Earth, and the potential ramifications are far-reaching because of global feedback effects between vegetation and climate. A better understanding of how environmental factors shape plant structure and function is crucial for predicting the consequences of environmental change for ecosystem functioning. Here we explore the biome-wide relationships between temperature, moisture and seven key plant functional traits both across space and over three decades of warming at 117 tundra locations. Spatial temperature-trait relationships were generally strong but soil moisture had a marked influence on the strength and direction of these relationships, highlighting the potentially important influence of changes in water availability on future trait shifts in tundra plant communities. Community height increased with warming across all sites over the past three decades, but other traits lagged far behind predicted rates of change. Our findings highlight the challenge of using space-for-time substitution to predict the functional consequences of future warming and suggest that functions that are tied closely to plant height will experience the most rapid change. They also reveal the strength with which environmental factors shape biotic communities at the coldest extremes of the planet and will help to improve projections of functional changes in tundra ecosystems with climate warming.


Assuntos
Aquecimento Global , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Tundra , Biometria , Mapeamento Geográfico , Umidade , Fenótipo , Solo/química , Análise Espaço-Temporal , Temperatura , Água/análise
6.
Nat Ecol Evol ; 2(9): 1443-1448, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30013133

RESUMO

Effective societal responses to rapid climate change in the Arctic rely on an accurate representation of region-specific ecosystem properties and processes. However, this is limited by the scarcity and patchy distribution of field measurements. Here, we use a comprehensive, geo-referenced database of primary field measurements in 1,840 published studies across the Arctic to identify statistically significant spatial biases in field sampling and study citation across this globally important region. We find that 31% of all study citations are derived from sites located within 50 km of just two research sites: Toolik Lake in the USA and Abisko in Sweden. Furthermore, relatively colder, more rapidly warming and sparsely vegetated sites are under-sampled and under-recognized in terms of citations, particularly among microbiology-related studies. The poorly sampled and cited areas, mainly in the Canadian high-Arctic archipelago and the Arctic coastline of Russia, constitute a large fraction of the Arctic ice-free land area. Our results suggest that the current pattern of sampling and citation may bias the scientific consensuses that underpin attempts to accurately predict and effectively mitigate climate change in the region. Further work is required to increase both the quality and quantity of sampling, and incorporate existing literature from poorly cited areas to generate a more representative picture of Arctic climate change and its environmental impacts.


Assuntos
Mudança Climática , Regiões Árticas , Ecossistema , Viés de Seleção , Análise Espacial
7.
Glob Chang Biol ; 24(6): 2660-2672, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29235209

RESUMO

Tundra regions are projected to warm rapidly during the coming decades. The tundra biome holds the largest terrestrial carbon pool, largely contained in frozen permafrost soils. With warming, these permafrost soils may thaw and become available for microbial decomposition, potentially providing a positive feedback to global warming. Warming may directly stimulate microbial metabolism but may also indirectly stimulate organic matter turnover through increased plant productivity by soil priming from root exudates and accelerated litter turnover rates. Here, we assess the impacts of experimental warming on turnover rates of leaf litter, active layer soil and thawed permafrost sediment in two high-arctic tundra heath sites in NE-Greenland, either dominated by evergreen or deciduous shrubs. We incubated shrub leaf litter on the surface of control and warmed plots for 1 and 2 years. Active layer soil was collected from the plots to assess the effects of 8 years of field warming on soil carbon stocks. Finally, we incubated open cores filled with newly thawed permafrost soil for 2 years in the active layer of the same plots. After field incubation, we measured basal respiration rates of recovered thawed permafrost cores in the lab. Warming significantly reduced litter mass loss by 26% after 1 year incubation, but differences in litter mass loss among treatments disappeared after 2 years incubation. Warming also reduced litter nitrogen mineralization and decreased the litter carbon to nitrogen ratio. Active layer soil carbon stocks were reduced 15% by warming, while soil dissolved nitrogen was reduced by half in warmed plots. Warming had a positive legacy effect on carbon turnover rates in thawed permafrost cores, with 10% higher respiration rates measured in cores from warmed plots. These results demonstrate that warming may have contrasting effects on above- and belowground tundra carbon turnover, possibly governed by microbial resource availability.


Assuntos
Ciclo do Carbono , Aquecimento Global , Ciclo do Nitrogênio , Solo/química , Tundra , Regiões Árticas , Biomassa , Groenlândia , Pergelissolo
8.
Glob Chang Biol ; 23(11): 5006-5020, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28464494

RESUMO

Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83°N in North Greenland. We analysed climate-growth relationships over the period with available instrumental data (1950-2012) between a 102-year-long C. tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulTemx ), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C. tetragona growth and likely represent in situ summer temperatures. JulTemx explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid-twentieth century, as well as warming in recent decades. The rapid growth increase in C. tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to summer warming in the High Arctic.


Assuntos
Mudança Climática , Ericaceae/crescimento & desenvolvimento , Temperatura Alta , Groenlândia , Estações do Ano
9.
Ann Bot ; 119(3): 433-445, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28064192

RESUMO

BACKGROUND AND AIMS: Climate change in the Arctic is projected to increase temperature, precipitation and snowfall. This may alter leaf anatomy and gas exchange either directly or indirectly. Our aim was to assess whether increased snow depth and warming modify leaf anatomy and affect biogenic volatile organic compound (BVOC) emissions and CO2 exchange of the widespread arctic shrubs Betula nana and Empetrum nigrum ssp. hermaphroditum METHODS: Measurements were conducted in a full-factorial field experiment in Central West Greenland, with passive summer warming by open-top chambers and snow addition using snow fences. Leaf anatomy was assessed using light microscopy and scanning electron microscopy. BVOC emissions were measured using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analysed by gas chromatography-mass spectrometry. Carbon dioxide exchange was measured using an infrared gas analyser. KEY RESULTS: Despite a later snowmelt and reduced photosynthesis for B. nana especially, no apparent delays in the BVOC emissions were observed in response to snow addition. Only a few effects of the treatments were seen for the BVOC emissions, with sesquiterpenes being the most responsive compound group. Snow addition affected leaf anatomy by increasing the glandular trichome density in B. nana and modifying the mesophyll of E. hermaphroditum The open-top chambers thickened the epidermis of B. nana, while increasing the glandular trichome density and reducing the palisade:spongy mesophyll ratio in E. hermaphroditum CONCLUSIONS: Leaf anatomy was modified by both treatments already after the first winter and we suggest links between leaf anatomy, CO2 exchange and BVOC emissions. While warming is likely to reduce soil moisture, melt water from a deeper snow pack alleviates water stress in the early growing season. The study emphasizes the ecological importance of changes in winter precipitation in the Arctic, which can interact with climate-warming effects.


Assuntos
Betula/anatomia & histologia , Dióxido de Carbono/metabolismo , Ericaceae/anatomia & histologia , Folhas de Planta/anatomia & histologia , Compostos Orgânicos Voláteis/metabolismo , Regiões Árticas , Betula/metabolismo , Betula/fisiologia , Betula/ultraestrutura , Ericaceae/metabolismo , Ericaceae/fisiologia , Ericaceae/ultraestrutura , Groenlândia , Temperatura Alta , Microscopia , Microscopia Eletrônica de Varredura , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Estações do Ano , Neve
10.
Glob Chang Biol ; 23(1): 406-420, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27197084

RESUMO

Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.


Assuntos
Fungos/crescimento & desenvolvimento , Tundra , Regiões Árticas , Betula , Ecossistema , Groenlândia , Folhas de Planta , Estações do Ano , Microbiologia do Solo , Temperatura
11.
J Chromatogr A ; 1348: 158-63, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24845826

RESUMO

Five ionic liquid stationary phases were tested for the gas chromatographic (GC) analysis of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). In comparison with a non-polar DB5MS stationary phase, which is normally used in single-column GC for these compounds, all phases tested provided a different elution pattern. Mono-ortho substituted PCBs showed longer retention times, whereas di-ortho PCB congeners eluted earlier. These different patterns provide a potential for use of these columns for single-column PCB analysis, but in particular for use in comprehensive two-dimensional GC (GC×GC). The SLB-IL111 phase showed the most striking differences in elution of PCBs compared to DB5MS. The analysis of OCPs was hindered by adsorption and on-column degradation with most of the phases tested. Additional experiments with polybrominated diphenylethers (PBDEs) also revealed serious degradation of most of the congeners. Only the SLB-IL60 column showed a better performance for OCPs, in combination with a relatively low bleeding.


Assuntos
Cromatografia Gasosa/métodos , Monitoramento Ambiental/métodos , Éteres Difenil Halogenados/análise , Hidrocarbonetos Clorados/análise , Líquidos Iônicos/química , Praguicidas/análise , Bifenilos Policlorados/análise , Poluentes Ambientais/análise
12.
Ambio ; 41 Suppl 3: 269-80, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22864700

RESUMO

Precipitation amounts and patterns at high latitude sites have been predicted to change as a result of global climatic changes. We addressed vegetation responses to three years of experimentally increased summer precipitation in two previously unaddressed tundra types: Betula nana-dominated shrub tundra (northeast Siberia) and a dry Sphagnum fuscum-dominated bog (northern Sweden). Positive responses to approximately doubled ambient precipitation (an increase of 200 mm year(-1)) were observed at the Siberian site, for B. nana (30 % larger length increments), Salix pulchra (leaf size and length increments) and Arctagrostis latifolia (leaf size and specific leaf area), but none were observed at the Swedish site. Total biomass production did not increase at either of the study sites. This study corroborates studies in other tundra vegetation types and shows that despite regional differences at the plant level, total tundra plant productivity is, at least at the short or medium term, largely irresponsive to experimentally increased summer precipitation.


Assuntos
Irrigação Agrícola , Ecossistema , Desenvolvimento Vegetal , Chuva , Plantas/classificação , Sibéria , Especificidade da Espécie , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA