Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Aging Cell ; 22(3): e13768, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36756698

RESUMO

Heart failure has reached epidemic proportions in a progressively ageing population. The molecular mechanisms underlying heart failure remain elusive, but evidence indicates that DNA damage is enhanced in failing hearts. Here, we tested the hypothesis that endogenous DNA repair in cardiomyocytes is critical for maintaining normal cardiac function, so that perturbed repair of spontaneous DNA damage drives early onset of heart failure. To increase the burden of spontaneous DNA damage, we knocked out the DNA repair endonucleases xeroderma pigmentosum complementation group G (XPG) and excision repair cross-complementation group 1 (ERCC1), either systemically or cardiomyocyte-restricted, and studied the effects on cardiac function and structure. Loss of DNA repair permitted normal heart development but subsequently caused progressive deterioration of cardiac function, resulting in overt congestive heart failure and premature death within 6 months. Cardiac biopsies revealed increased oxidative stress associated with increased fibrosis and apoptosis. Moreover, gene set enrichment analysis showed enrichment of pathways associated with impaired DNA repair and apoptosis, and identified TP53 as one of the top active upstream transcription regulators. In support of the observed cardiac phenotype in mutant mice, several genetic variants in the ERCC1 and XPG gene in human GWAS data were found to be associated with cardiac remodelling and dysfunction. In conclusion, unrepaired spontaneous DNA damage in differentiated cardiomyocytes drives early onset of cardiac failure. These observations implicate DNA damage as a potential novel therapeutic target and highlight systemic and cardiomyocyte-restricted DNA repair-deficient mouse mutants as bona fide models of heart failure.


Assuntos
Proteínas de Ligação a DNA , Insuficiência Cardíaca , Camundongos , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Miócitos Cardíacos/metabolismo , Reparo do DNA/genética , Dano ao DNA/genética , Insuficiência Cardíaca/genética , Endonucleases
2.
Sci Rep ; 10(1): 13173, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764569

RESUMO

The prevalence of diabetic metabolic derangement (DMetD) has increased dramatically over the last decades. Although there is increasing evidence that DMetD is associated with cardiac dysfunction, the early DMetD-induced myocardial alterations remain incompletely understood. Here, we studied early DMetD-related cardiac changes in a clinically relevant large animal model. DMetD was established in adult male Göttingen miniswine by streptozotocin injections and a high-fat, high-sugar diet, while control animals remained on normal pig chow. Five months later left ventricular (LV) function was assessed by echocardiography and hemodynamic measurements, followed by comprehensive biochemical, molecular and histological analyses. Robust DMetD developed, evidenced by hyperglycemia, hypercholesterolemia and hypertriglyceridemia. DMetD resulted in altered LV nitroso-redox balance, increased superoxide production-principally due to endothelial nitric oxide synthase (eNOS) uncoupling-reduced nitric oxide (NO) production, alterations in myocardial gene-expression-particularly genes related to glucose and fatty acid metabolism-and mitochondrial dysfunction. These abnormalities were accompanied by increased passive force of isolated cardiomyocytes, and impaired LV diastolic function, evidenced by reduced LV peak untwist velocity and increased E/e'. However, LV weight, volume, collagen content, and cardiomyocyte cross-sectional area were unchanged at this stage of DMetD. In conclusion, DMetD, in a clinically relevant large-animal model results in myocardial oxidative stress, eNOS uncoupling and reduced NO production, together with an altered metabolic gene expression profile and mitochondrial dysfunction. These molecular alterations are associated with stiffening of the cardiomyocytes and early diastolic dysfunction before any structural cardiac remodeling occurs. Therapies should be directed to ameliorate these early DMetD-induced myocardial changes to prevent the development of overt cardiac failure.


Assuntos
Diabetes Mellitus Experimental/fisiopatologia , Diástole , Mitocôndrias/patologia , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Animais , Respiração Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Hemodinâmica , Suínos
3.
Cardiovasc Res ; 113(14): 1776-1788, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016873

RESUMO

AIMS: The formation of cell-cell and cell-extra cellular matrix (ECM) contacts by endothelial cells (ECs) is crucial for the stability and integrity of a vascular network. We previously identified cingulin-like 1 (Cgnl1) in a transcriptomic screen for new angiogenic modulators. Here we aim to study the function of the cell-cell junction associated protein Cgnl1 during vessel formation. METHODS AND RESULTS: Unlike family member cingulin, Cgnl1 expression is enriched in ECs during vascular growth. Cgnl1 is important for the formation of multicellular tubule structures, as shown in vitro using loss-of function assays in a 3D matrix co-culture system that uses primary human ECs and supporting mural cells. Further studies revealed that Cgnl1 regulates vascular growth by promoting Ve-cadherin association with the actin cytoskeleton, thereby stabilizing adherens junctions. Cgnl1 also regulates focal adhesion assembly in response to ECM contact, promoting vinculin and paxillin recruitment and focal adhesion kinase signalling. In vivo, we demonstrate in a postnatal retinal vascular development model in mice that Cgnl1 function is crucial for sustaining neovascular growth and stability. CONCLUSIONS: Our data demonstrate a functional relevance for Cgnl1 as a defining factor in new vessel formation both in vitro and in vivo.


Assuntos
Junções Aderentes/metabolismo , Proteínas do Citoesqueleto/metabolismo , Células Endoteliais/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular/fisiologia , Proteínas do Citoesqueleto/genética , Endotélio Vascular/metabolismo , Humanos , Junções Intercelulares/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL
4.
Cardiovasc Res ; 110(1): 129-39, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26822228

RESUMO

AIMS: Impairment of the endothelial barrier leads to microvascular breakdown in cardiovascular disease and is involved in intraplaque haemorrhaging and the progression of advanced atherosclerotic lesions that are vulnerable to rupture. The exact mechanism that regulates vascular integrity requires further definition. Using a microarray screen for angiogenesis-associated genes during murine embryogenesis, we identified thrombospondin type I domain 1 (THSD1) as a new putative angiopotent factor with unknown biological function. We sought to characterize the role of THSD1 in endothelial cells during vascular development and cardiovascular disease. METHODS AND RESULTS: Functional knockdown of Thsd1 in zebrafish embryos and in a murine retina vascularization model induced severe haemorrhaging without affecting neovascular growth. In human carotid endarterectomy specimens, THSD1 expression by endothelial cells was detected in advanced atherosclerotic lesions with intraplaque haemorrhaging, but was absent in stable lesions, implying involvement of THSD1 in neovascular bleeding. In vitro, stimulation with pro-atherogenic factors (3% O2 and TNFα) decreased THSD1 expression in human endothelial cells, whereas stimulation with an anti-atherogenic factor (IL10) showed opposite effect. Therapeutic evaluation in a murine advanced atherosclerosis model showed that Thsd1 overexpression decreased plaque vulnerability by attenuating intraplaque vascular leakage, subsequently reducing macrophage accumulation and necrotic core size. Mechanistic studies in human endothelial cells demonstrated that THSD1 activates FAK-PI3K, leading to Rac1-mediated actin cytoskeleton regulation of adherens junctions and focal adhesion assembly. CONCLUSION: THSD1 is a new regulator of endothelial barrier function during vascular development and protects intraplaque microvessels against haemorrhaging in advanced atherosclerotic lesions.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Microvasos/metabolismo , Neovascularização Patológica/metabolismo , Trombospondinas/metabolismo , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Doenças das Artérias Carótidas/metabolismo , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Placa Aterosclerótica/patologia , Trombospondina 1/metabolismo
5.
J Mol Cell Cardiol ; 77: 168-74, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25451387

RESUMO

Cardiac hypertrophy of the left ventricle (LV) in response to dynamic exercise-training (EX) is a beneficial adaptation to increased workload, and is thought to result from genetic reprogramming. We aimed to determine which transcription factors (TFs) are involved in this genetic reprogramming of the LV in swine induced by exercise-training. Swine underwent 3-6 weeks of dynamic EX, resulting in a 16% increase of LV weight/body weight ratio compared to sedentary animals (P=0.03). Hemodynamic analysis showed an increased stroke volume index (stroke volume/body weight +35%; P=0.02). Microarray-analysis of LV tissue identified 339 upregulated and 408 downregulated genes (false discovery rate<0.05). Of the human homologues of the differentially expressed genes, promoter regions were searched for TF consensus binding sites (TFBSs). For upregulated and downregulated genes, 17 and 24 TFBSs were overrepresented by >1.5-fold (P<0.01), respectively. In DNA-binding assays, using LV nuclear protein extracts and protein/DNA array, signal intensity changes >2-fold were observed for 23 TF-specific DNA probes. Matching results in TFBS and protein/DNA array analyses were obtained for transcription factors YY1 (Yin Yang 1), PAX6 (paired box 6) and GR (glucocorticoid receptor). Notably, PAX6 and GR show lower signals in TFBS and protein/DNA array analyses upon exercise-training, whereas we previously showed higher signals for these factors in the remodeled LV of swine post-myocardial infarction (MI). In conclusion, we have identified transcription factors that may drive the genetic reprogramming underlying exercise-training induced LV hypertrophy in swine. PAX6 and GR are among the transcription factors that are oppositely regulated in LV hypertrophy after exercise-training and MI. These proteins may be at the base of the differences between pathological and physiological hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Transcriptoma , Animais , Sítios de Ligação , Cardiomegalia/genética , Epigênese Genética , Feminino , Genômica , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Condicionamento Físico Animal , Corrida , Análise de Sequência de DNA , Sus scrofa , Fatores de Transcrição/fisiologia
6.
Circulation ; 125(25): 3142-58, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22661514

RESUMO

BACKGROUND: New vessel formation contributes to organ development during embryogenesis and tissue repair in response to mechanical damage, inflammation, and ischemia in adult organisms. Early angiogenesis includes formation of an excessive primitive network that needs to be reorganized into a secondary vascular network with higher hierarchical structure. Vascular pruning, the removal of aberrant neovessels by apoptosis, is a vital step in this process. Although multiple molecular pathways for early angiogenesis have been identified, little is known about the genetic regulators of secondary network development. METHODS AND RESULTS: Using a transcriptomics approach, we identified a new endothelial specific gene named FYVE, RhoGEF, and PH domain-containing 5 (FGD5) that plays a crucial role in vascular pruning. Loss- and gain-of-function studies demonstrate that FGD5 inhibits neovascularization, indicated by in vitro tube-formation, aortic-ring, and coated-bead assays and by in vivo coated-bead plug assays and studies in the murine retina model. FGD5 promotes apoptosis-induced vaso-obliteration via induction of the hey1-p53 pathway by direct binding and activation of cdc42. Indeed, FGD5 correlates with apoptosis in endothelial cells during vascular remodeling and was linked to rising p21(CIP1) levels in aging mice. CONCLUSION: We have identified FGD5 as a novel genetic regulator of vascular pruning by activation of endothelial cell-targeted apoptosis.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Endotélio Vascular/patologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Células Endoteliais da Veia Umbilical Humana/patologia , Neovascularização Patológica/patologia , Neovascularização Patológica/prevenção & controle , Animais , Proteínas Reguladoras de Apoptose/genética , Proliferação de Células , Células Cultivadas , Endotélio Vascular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Neovascularização Patológica/genética , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Transcriptoma/genética
7.
Arterioscler Thromb Vasc Biol ; 32(5): 1289-98, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22426130

RESUMO

OBJECTIVE: In cardiovascular regulation, heme oxygenase-1 (HO-1) activity has been shown to inhibit vascular smooth muscle cell (VSMC) proliferation by promoting cell cycle arrest at the G1/S phase. However, the effect of HO-1 on VSMC migration remains unclear. We aim to elucidate the mechanism by which HO-1 regulates PDGFBB-induced VSMC migration. METHODS AND RESULTS: Transduction of HO-1 cDNA adenoviral vector severely impeded human VSMC migration in a scratch, transmembrane, and directional migration assay in response to PDGFBB stimulation. Similarly, HO-1 overexpression in the remodeling process during murine retinal vasculature development attenuated VSMC coverage over the major arterial branches as compared with sham vector-transduced eyes. HO-1 expression in VSMCs significantly upregulated VEGFA and VEGFR2 expression, which subsequently promoted the formation of inactive PDGFRß/VEGFR2 complexes. This compromised PDGFRß phosphorylation and impeded the downstream cascade of FAK-p38 signaling. siRNA-mediated silencing of VEGFA or VEGFR2 could reverse the inhibitory effect of HO-1 on VSMC migration. CONCLUSIONS: These findings identify a potent antimigratory function of HO-1 in VSMCs, a mechanism that involves VEGFA and VEGFR2 upregulation, followed by assembly of inactive VEGFR2/PDGFRß complexes that attenuates effective PDGFRß signaling.


Assuntos
Heme Oxigenase-1/farmacologia , Músculo Liso Vascular/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , RNA Mensageiro/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Regulação para Cima/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Movimento Celular , Proliferação de Células , Heme Oxigenase-1/metabolismo , Humanos , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
8.
Circ Res ; 109(4): 382-95, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21700929

RESUMO

RATIONALE: Neovascularization is required for embryonic development and plays a central role in diseases in adults. In atherosclerosis, the role of neovascularization remains to be elucidated. In a genome-wide microarray-screen of Flk1+ angioblasts during murine embryogenesis, the v-ets erythroblastosis virus E26 oncogene homolog 2 (Ets2) transcription factor was identified as a potential angiogenic factor. OBJECTIVES: We assessed the role of Ets2 in endothelial cells during atherosclerotic lesion progression toward plaque instability. METHODS AND RESULTS: In 91 patients treated for carotid artery disease, Ets2 levels showed modest correlations with capillary growth, thrombogenicity, and rising levels of tumor necrosis factor-α (TNFα), monocyte chemoattractant protein 1, and interleukin-6 in the atherosclerotic lesions. Experiments in ApoE(-/-) mice, using a vulnerable plaque model, showed that Ets2 expression was increased under atherogenic conditions and was augmented specifically in the vulnerable versus stable lesions. In endothelial cell cultures, Ets2 expression and activation was responsive to the atherogenic cytokine TNFα. In the murine vulnerable plaque model, overexpression of Ets2 promoted lesion growth with neovessel formation, hemorrhaging, and plaque destabilization. In contrast, Ets2 silencing, using a lentiviral shRNA construct, promoted lesion stabilization. In vitro studies showed that Ets2 was crucial for TNFα-induced expression of monocyte chemoattractant protein 1, interleukin-6, and vascular cell adhesion molecule 1 in endothelial cells. In addition, Ets2 promoted tube formation and amplified TNFα-induced loss of vascular endothelial integrity. Evaluation in a murine retina model further validated the role of Ets2 in regulating vessel inflammation and endothelial leakage. CONCLUSIONS: We provide the first evidence for the plaque-destabilizing role of Ets2 in atherosclerosis development by induction of an intraplaque proinflammatory phenotype in endothelial cells.


Assuntos
Doenças da Aorta/metabolismo , Doenças das Artérias Carótidas/metabolismo , Células Endoteliais/metabolismo , Inflamação/metabolismo , Proteína Proto-Oncogênica c-ets-2/metabolismo , Análise de Variância , Animais , Doenças da Aorta/imunologia , Doenças da Aorta/patologia , Doenças da Aorta/fisiopatologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Doenças das Artérias Carótidas/imunologia , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/fisiopatologia , Células Cultivadas , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Células Endoteliais/imunologia , Hemorragia/metabolismo , Humanos , Inflamação/imunologia , Inflamação/patologia , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Neovascularização Fisiológica , Fenótipo , Proteína Proto-Oncogênica c-ets-2/genética , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Ruptura , Fatores de Tempo , Transfecção , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Molécula 1 de Adesão de Célula Vascular/metabolismo
9.
Gut ; 60(9): 1204-12, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21307168

RESUMO

Objective Deregulation of the Wnt signalling pathway by mutations in the Apc or ß-catenin genes underlies colorectal carcinogenesis. As a result, ß-catenin stabilises, translocates to the nucleus, and activates gene transcription. Intestinal tumours show a heterogeneous pattern of nuclear ß-catenin, with the highest levels observed at the invasion front. Activation of receptor tyrosine kinases in these tumour areas by growth factors expressed by surrounding stromal cells phosphorylate ß-catenin at tyrosine residues, which is thought to increase ß-catenin nuclear translocation and tumour invasiveness. This study investigates the relevance of ß-catenin tyrosine phosphorylation for Wnt signalling and intestinal tumorigenesis in vivo. Design A conditional knock-in mouse model was generated into which the phospho-mimicking Y654E modification in the endogenous ß-catenin gene was introduced. Results This study provided in vivo evidence that ß-catenin(E654) is characterised by reduced affinity for cadherins, increased signalling and strongly increased phosphorylation at serine 675 by protein kinase A (PKA). In addition, homozygosity for the ß-catenin(E654) targeted allele caused embryonic lethality, whereas heterozygosity predisposed to intestinal tumour development, and strongly enhanced Apc-driven intestinal tumour initiation associated with increased nuclear accumulation of ßcatenin. Surprisingly, the expression of ß-catenin(E654) did not affect histological grade or induce tumour invasiveness. Conclusions A thus far unknown mechanism was uncovered in which Y654 phosphorylation of ß-catenin facilitates additional phosphorylation at serine 675 by PKA. In addition, in contrast to the current belief that ß-catenin Y654 phosphorylation increases tumour progression to a more invasive phenotype, these results show that it rather increases tumour initiation by enhancing Wnt signalling.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias Colorretais/metabolismo , Proteínas Wnt/fisiologia , beta Catenina/metabolismo , Adenoma/genética , Adenoma/metabolismo , Animais , Células COS , Caderinas/metabolismo , Membrana Celular/metabolismo , Transformação Celular Neoplásica/genética , Chlorocebus aethiops , Neoplasias Colorretais/genética , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Perda do Embrião/genética , Técnicas de Introdução de Genes , Genes APC , Genótipo , Heterozigoto , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia
10.
Genesis ; 47(1): 7-13, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18942097

RESUMO

To develop a sensitive and inducible system to study intestinal biology, we generated a transgenic mouse model expressing the reverse tetracycline transactivator rtTA2-M2 under control of the 12.4 kb murine Villin promoter. The newly generated Villin-rtTA2-M2 mice were then bred with the previously developed tetO-HIST1H2BJ/GFP model to assess inducibility and tissue-specificity. Expression of the histone H2B-GFP fusion protein was observed exclusively upon doxycycline induction and was uniformly distributed throughout the intestinal epithelium. The Villin-rtTA2-M2 was also found to drive transgene expression in the developing mouse intestine. Furthermore, we could detect transgene expression in the proximal tubules of the kidney and in a population of alleged gastric progenitor cells. By administering different concentrations of doxycycline, we show that the Villin-rtTA2-M2 system drives transgene expression in a dosage-dependent fashion. Thus, we have generated a novel doxycycline-inducible mouse model, providing a valuable tool to study the effect of different gene dosages on intestinal physiology and pathology.


Assuntos
Doxiciclina/farmacologia , Expressão Gênica/efeitos dos fármacos , Engenharia Genética/métodos , Intestinos/fisiologia , Animais , Genes Reporter/genética , Mucosa Intestinal/metabolismo , Intestinos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Pesquisa , Titulometria , Transgenes/genética
11.
Int J Dev Biol ; 49(4): 437-41, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15968590

RESUMO

The Fxr gene family is composed of three members, FMR1, FXR1 and FXR2. The FMR1 gene is involved in the fragile X syndrome, whereas for the other two members, no human disorder has been identified yet. An appropriate animal model to study in vivo gene function is essential to unravel the cellular function of the gene products FMRP, FXR1P and FXR2P, respectively. In Xenopus tropicalis both Fmr1 and Fxr1 were identified; however, unexpectedly Fxr2 was not. Here we describe the characterization of both Fmrp and Fxr1p in Xenopus tropicalis. Fmrp is expressed ubiquitously throughout the embryo during embryonic development, whereas Fxr1p shows a more tissue-specific expression particularly during late embryonic development. In adult frogs both proteins are highly expressed in most neurons of the central nervous system and in all spermatogenic cells in the testis. In addition, Fxr1p is also highly expressed in striated muscle tissue. Western blotting experiments revealed only one prominent isoform for both proteins using different tissue homogenates from adult frogs. Thus, for in vivo gene function studies, this relative simple animal model may serve as a highly advantageous and complementary model.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Deficiência Intelectual/genética , Proteínas de Ligação a RNA/genética , Proteínas de Xenopus/metabolismo , Xenopus/genética , Sequência de Aminoácidos , Animais , Proteína do X Frágil da Deficiência Intelectual/química , Proteína do X Frágil da Deficiência Intelectual/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Modelos Animais , Dados de Sequência Molecular , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
12.
Dev Genes Evol ; 215(4): 198-206, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15818485

RESUMO

Fragile X syndrome is the most common inherited form of mental retardation. It is caused by the lack of the Fragile X Mental Retardation Protein (FMRP), which is encoded by the FMR1 gene. Although Fmr1 knockout mice display some characteristics also found in fragile X patients, it is a complex animal model to study brain abnormalities, especially during early embryonic development. Interestingly, the ortholog of the FMR1 gene has been identified not only in mouse, but also in zebrafish (Danio rerio). In this study, an amino acid sequence comparison of FMRP orthologs was performed to determine the similar regions of FMRP between several species, including human, mouse, frog, fruitfly and zebrafish. Further characterisation of Fmrp has been performed in both adults and embryos of zebrafish using immunohistochemistry and western blotting with specific antibodies raised against zebrafish Fmrp. We have demonstrated a strong Fmrp expression in neurons of the brain and only a very weak expression in the testis. In brain tissue, a different distribution of the isoforms of Fmrp, compared to human and mouse brain tissue, was shown using western blot analysis. Due to the high similarity between zebrafish Fmrp and human FMRP and their similar expression pattern, the zebrafish has great potential as a complementary animal model to study the pathogenesis of the fragile X syndrome, especially during embryonic development.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Proteínas de Ligação a RNA/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Química Encefálica/genética , Células COS , Chlorocebus aethiops , Sequência Conservada , Embrião não Mamífero , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Imuno-Histoquímica , Modelos Animais , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Sinais de Localização Nuclear/genética , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Transfecção , Peixe-Zebra/embriologia
13.
J Exp Biol ; 207(Pt 19): 3329-38, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15326209

RESUMO

The X-linked FMR1 gene, which is involved in the fragile X syndrome, forms a small gene family with its two autosomal homologs, FXR1 and FXR2. Mouse models for the FXR genes have been generated and proved to be valuable in elucidating the function of these genes, particularly in adult mice. Unfortunately, Fxr1 knockout mice die shortly after birth, necessitating an animal model that allows the study of the role of Fxr1p, the gene product of Fxr1, in early embryonic development. For gene function studies during early embryonic development the use of zebrafish as a model organism is highly advantageous. In this paper the suitability of the zebrafish as a model organism to study Fxr1p function during early development is explored. As a first step, we present here the initial characterization of Fxr1p in zebrafish. Fxr1p is present in all the cells from zebrafish embryos from the 2/4-cell stage onward; however, during late development a more tissue-specific distribution is found, with the highest expression in developing muscle. In adult zebrafish, Fxr1p is localized at the myoseptum and in costamere-like granules in skeletal muscle. In the testis, Fxr1p is localized in immature spermatogenic cells and in brain tissue Fxr1p displays a predominantly nuclear staining in neurons throughout the brain. Finally, the different tissue-specific isoforms of Fxr1p are characterized. Since the functional domains and the expression pattern of Fxr1p in zebrafish are comparable to those in higher vertebrates such as mouse and human, we conclude that the zebrafish is a highly suitable model for functional studies of Fxr1p.


Assuntos
Perfilação da Expressão Gênica , Modelos Animais , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Crioultramicrotomia , Primers do DNA , Imuno-Histoquímica , Dados de Sequência Molecular , Proteínas de Ligação a RNA/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA