Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Phys Med Biol ; 63(8): 085015, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29521280

RESUMO

As a prerequisite for clinical treatments it was necessary to characterize the Elekta 1.5 T MRI-linac 7 MV FFF radiation beam. Following acceptance testing, beam characterization data were acquired with Semiflex 3D (PTW 31021), microDiamond (PTW 60019), and Farmer-type (PTW 30013 and IBA FC65-G) detectors in an Elekta 3D scanning water phantom and a PTW 1D water phantom. EBT3 Gafchromic film and ion chamber measurements in a buildup cap were also used. Special consideration was given to scan offsets, detector effective points of measurement and avoiding air gaps. Machine performance has been verified and the system satisfied the relevant beam requirements of IEC60976. Beam data were acquired for field sizes between 1 × 1 and 57 × 22 cm2. New techniques were developed to measure percentage depth dose (PDD) curves including the electron return effect at beam exit, which exhibits an electron-type practical range of 1.2 ± 0.1 cm. The Lorentz force acting on the secondary charged particles creates an asymmetry in the crossline profiles with an average shift of +0.24 cm. For a 10 × 10 cm2 beam, scatter from the cryostat contributes 1% of the dose at isocentre. This affects the relative output factors, scatter factors and beam profiles, both in-field and out-of-field. The average 20%-80% penumbral width measured for small fields with a microDiamond detector at 10 cm depth is 0.50 cm. MRI-linac penumbral widths are very similar to that of the Elekta Agility linac MLC, as is the near-surface dose PDD(0.2 cm) = 57%. The entrance surface dose is ∼36% of Dmax. Cryostat transmission is quantified for inclusion within the treatment planning system. As a result, the 1.5 T MRI-linac 7 MV FFF beam has been characterised for the first time and is suitable for clinical use. This was a key step towards the first clinical treatments with the MRI-linac, which were delivered at University Medical Center Utrecht in May 2017 (Raaymakers et al 2017 Phys. Med. Biol. 62 L41-50).


Assuntos
Imageamento por Ressonância Magnética/métodos , Aceleradores de Partículas , Imagens de Fantasmas , Radiometria/métodos , Elétrons , Humanos , Campos Magnéticos , Posicionamento do Paciente , Água
2.
Phys Med Biol ; 63(9): 095001, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29595150

RESUMO

The transverse magnetic field of an MRI-linac sweeps contaminant electrons away from the radiation beam. Films oriented perpendicular to the magnetic field and 5 cm from the radiation beam edge show a projection of the divergent beam, indicating that contaminant electrons spiral along magnetic field lines and deposit dose on surfaces outside the primary beam perpendicular to the magnetic field. These spiraling contaminant electrons (SCE) could increase skin doses to protruding regions of the patient along the cranio-caudal axis. This study investigated doses from SCE for an MRI-linac comprising a 7 MV linac and a 1.5 T MRI scanner. Surface doses to films perpendicular to the magnetic field and 5 cm from the radiation beam edge showed increased dose within the projection of the primary beam, whereas films parallel to the magnetic field and 5 cm from the beam edge showed no region of increased dose. However, the dose from contaminant electrons is absorbed within a few millimeters. For large fields, the SCE dose is within the same order of magnitude as doses from scattered and leakage photons. Doses for both SCE and scattered photons decrease rapidly with decreasing beam size and increasing distance from the beam edge.


Assuntos
Elétrons , Campos Magnéticos , Imageamento por Ressonância Magnética/métodos , Fótons , Pele/efeitos da radiação , Humanos , Aceleradores de Partículas
3.
Phys Med Biol ; 62(23): L41-L50, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29135471

RESUMO

The integration of 1.5 T MRI functionality with a radiotherapy linear accelerator (linac) has been pursued since 1999 by the UMC Utrecht in close collaboration with Elekta and Philips. The idea behind this integrated device is to offer unrivalled, online and real-time, soft-tissue visualization of the tumour and the surroundings for more precise radiation delivery. The proof of concept of this device was given in 2009 by demonstrating simultaneous irradiation and MR imaging on phantoms, since then the device has been further developed and commercialized by Elekta. The aim of this work is to demonstrate the clinical feasibility of online, high-precision, high-field MRI guidance of radiotherapy using the first clinical prototype MRI-Linac. Four patients with lumbar spine bone metastases were treated with a 3 or 5 beam step-and-shoot IMRT plan. The IMRT plan was created while the patient was on the treatment table and based on the online 1.5 T MR images; pre-treatment CT was deformably registered to the online MRI to obtain Hounsfield values. Bone metastases were chosen as the first site as these tumors can be clearly visualized on MRI and the surrounding spine bone can be detected on the integrated portal imager. This way the portal images served as an independent verification of the MRI based guidance to quantify the geometric precision of radiation delivery. Dosimetric accuracy was assessed post-treatment from phantom measurements with an ionization chamber and film. Absolute doses were found to be highly accurate, with deviations ranging from 0.0% to 1.7% in the isocenter. The geometrical, MRI based targeting as confirmed using portal images was better than 0.5 mm, ranging from 0.2 mm to 0.4 mm. In conclusion, high precision, high-field, 1.5 T MRI guided radiotherapy is clinically feasible.


Assuntos
Neoplasias Ósseas/radioterapia , Região Lombossacral/efeitos da radiação , Imageamento por Ressonância Magnética/instrumentação , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Neoplasias da Coluna Vertebral/radioterapia , Idoso , Neoplasias Ósseas/secundário , Humanos , Pessoa de Meia-Idade , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Neoplasias da Coluna Vertebral/patologia
4.
NMR Biomed ; 29(9): 1231-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27191947

RESUMO

Multimodal MRI is the state of the art method for clinical diagnostics and therapy monitoring of the spinal cord, with MRS being an emerging modality that has the potential to detect relevant changes of the spinal cord tissue at an earlier stage and to enhance specificity. Methodological challenges related to the small dimensions and deep location of the human spinal cord inside the human body, field fluctuations due to respiratory motion, susceptibility differences to adjacent tissue such as vertebras and pulsatile flow of the cerebrospinal fluid hinder the clinical application of (1) H MRS to the human spinal cord. Complementary to previous studies that partly addressed these problems, this work aims at enhancing the signal-to-noise ratio (SNR) of (1) H MRS in the human spinal cord. To this end a flexible tight fit high density receiver array and ultra-high field strength (7 T) were combined. A dielectric waveguide and dipole antenna transmission coil allowed for dual channel RF shimming, focusing the RF field in the spinal cord, and an inner-volume saturated semi-LASER sequence was used for robust localization in the presence of B1 (+) inhomogeneity. Herein we report the first 7 T spinal cord (1) H MR spectra, which were obtained in seven independent measurements of 128 averages each in three healthy volunteers. The spectra exhibit high quality (full width at half maximum 0.09 ppm, SNR 7.6) and absence of artifacts and allow for reliable quantification of N-acetyl aspartate (NAA) (NAA/Cr (creatine) 1.31 ± 0.20; Cramér-Rao lower bound (CRLB) 5), total choline containing compounds (Cho) (Cho/Cr 0.32 ± 0.07; CRLB 7), Cr (CRLB 5) and myo-inositol (mI) (mI/Cr 1.08 ± 0.22; CRLB 6) in 7.5 min in the human cervical spinal cord. Thus metabolic information from the spinal cord can be obtained in clinically feasible scan times at 7 T, and its benefit for clinical decision making in spinal cord disorders will be investigated in the future using the presented methodology. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Molecular/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador/instrumentação , Medula Espinal/metabolismo , Transdutores , Adulto , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Aumento da Imagem/instrumentação , Campos Magnéticos , Masculino , Doses de Radiação , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade , Medula Espinal/anatomia & histologia
5.
Magn Reson Med ; 70(3): 885-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23044511

RESUMO

Application of travelling wave MR to human body imaging is restricted by the limited peak power of the available RF amplifiers. Nevertheless, travelling wave MR advantages like a large field of view excitation and distant location of transmit elements would be desirable for whole body MRI. In this work, improvement of the B1+ efficiency of travelling wave MR is demonstrated. High permittivity dielectric lining placed next to the scanner bore wall effectively reduces attenuation of the travelling wave in the longitudinal direction and at the same time directs the radial power flow toward the load. First, this is shown with an analytical model of a metallic cylindrical waveguide with the dielectric lining next to the wall and loaded with a cylindrical phantom. Simulations and experiments also reveal an increase of B1+ efficiency in the center of the bore for travelling wave MR with a dielectric lining. Phantom experiments show up to a 2-fold gain in B1+ with the dielectric lining. This corresponds to a 4-fold increase in power efficiency of travelling wave MR. In vivo experiments demonstrate an 8-fold signal-to-noise ratio gain with the dielectric lining. Overall, it is shown that dielectric lining is a constructive method to improve efficacy of travelling wave MR.


Assuntos
Imageamento por Ressonância Magnética/métodos , Humanos , Modelos Teóricos , Imagens de Fantasmas
6.
Magn Reson Med ; 69(4): 1186-93, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22760686

RESUMO

A setup for 7T MRI of the carotid arteries in the neck was designed and constructed. Separate dedicated arrays were used for transmit and receive. For the transmit array, single-side adapted dipole antennas were mounted on a dielectric pillow, which was shown to serve as a leaky waveguide, efficiently distributing B1 into the neck. Risk assessment was performed by simulations. Phantom measurements were performed to establish optimal positions of the antennas on the pillow. Using two antennas, a dual transmit setup was created. In vivo B1 (+) maps with different shim configurations were acquired to assess transmit performance. This effective transmit array was used in combination with a dedicated 30 channel small element receive coil. High-resolution in vivo turbo spin echo images were acquired to demonstrate the excellent performance of the setup.


Assuntos
Artérias Carótidas/anatomia & histologia , Aumento da Imagem/instrumentação , Angiografia por Ressonância Magnética/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA